
_J N I_/_o

NASA Conference Publication 2166

NumericalGrid
Generation
Techniques

v

Proceedings of a workshop sponsored by the

National Aeronautics and Space Administration
and the Institute for Computer Applications

in Science and Engineering and held at

NASA Langley Research Center

Hampton, Virginia

October 6-7, 1980

National Aeronautics

and Space Administration

Scientific and Technical

Information Office

_--_.__-' "_ 1980



V

LL _
V



i

I

1, Report No.

NASA CP-2] 66

4 Title and Subtitle

2. Government Accession No.

NUMERICAL GRID GENERATION TECHNIQUES

7, Author(s}

g Performing Organization Name and Address

NASA_Langley Research Center

Hampton, VA 23665

t2. S_nsoring A_ncy Name and Address

National Aeronautics and Space Administration

Washington, DC 20546

and

Institute for Computer Applications in Science

and Engineering

Hampton, VA 23665

15. _pplementary Notes --"

3. R_ipient's Catalo_ No

- ....
5 Report Date

January ]98]

6. Performing Organization Code
505-3] -83-02

8 Performing Organization Report No.

L-141 95

10. Work Unit No.

11. Contract or Grant No,

13. Type of Report and Period Covered
Conference Publication

14. Sponsnring A_encv Code

16 Abstract

The numerical generation of grids for the solution of partial differential equations

is presented in a series of papers. Complex variable techniques, differential

systems techniques, and algebraic techniques with applications in two and three

dimensions are described. Adaptive grid generation and grid effects on errors

in the solution of partial differential equations are additional subject areas

that are discussed. The material in this document has been presented at the

workshop on Numerical Grid Generation Techniques held at NASA Langley Research

Center October 6-7, ]980.

-- , . -,

7. Key Words (Suggested by Author(s))

_PRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

US DEPARTMENTOF COMMERC(
SPRINGFIELD,VA 22)61

Grid generation

Coordinate transformations

Partial differential equations

Finite difference techniques

Finite element techniques

Fluid Flow solutions

20. Security Classif. (of this

Unclassified

19. Security Oa_if. (of this report)

Unclassified

ta, Distribution Statement

Unclassified - Unlimited

page) 21.

Subject Category,S'

22 PTice

A24

For sate by the National Technical Information Service, Springfield. VLrglma 22161

NASA-Langley, 1980





j

v

PREFACE

This document contains a set of papers presented at the Workshop on

Numerical Grid Generation Techniques for Partial Differential Equations held

at Langley Research Center October 6-7, ]980. The workshop was organized to

assess the "state of the art" in grid generation and to assemble the individuals

most involved with the technology to exchange ideas and establish prospects

for the advancement of the technology.

The workshop was divided into three primary categories: classical tech-

niques (complex variables); differential-systems techniques; and algebraic

techniques. Intermixed in these categories were papers on adaptive grid

generation and the analysis of errors caused by grids in the solution of par-

tial differential equations. Herein, the three invited papers are presented

first and are followed by the other papers in alphabetical order according

to the first author's name.

It is apparent from the papers that two-dimensional grid generation

is highly advanced. Complex-variable techniques, differential-systems tech-

niques, and algebraic techniques are demonstrated to be viable for a wide

variety of two-dimensional problems with complex boundaries and topologies.

In some cases, associated computer programs are available for general

distribution.

Progress is being made in the areas of adaptive grid generation and the

analysis of how grids affect the solution of partial differential equations.

However, only relatively simple problems have been considered thus far, and

further work needs to be done in this area.

Several papers concerning three-dimensional grid generation were pre-

sented. However, the present "state of the art" for this area is highly

restrictive. The construction of arbitrary three-dimensional grids needs to be

done prior to the solution of many partial differential equation systems of

practical interest, and considerably more work needs to be done in this area.

Use of trade names or names of manufacturers in this report does not constitute

an official endorsement of such products or manufacturers, either expressed or

implied, by the National Aeronautics and Space Administration.

Robert E. Smith
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GRID GENERATION USING CLASSICAL TECHNIQUES

Gino Moretti

Polytechnic Institute of New York

Farmingdale, N. Y. 11735

1. Historical

_2

Conformal mapping has been used as a tool for solving

problems in fluid mechanics and electromagnetism for more than

one hundred years. Riemann's (somewhat incomplete) proof of the

possibility of mapping closed contours on circles dates from 1850

[I]. Sehwarz introduced what is now known as the Schwarz-

Christoffel transformation in 1869 [2]. In the same year, Kir-

ehhoff and Helmholtz used conformal mapping to solve classical

problems of flows with free surfaces [3]. The importance of con-

formal mapping in fluid mechanics in the second half of the

nineteenth century and the first quarter of the present one stems

from the well-known property of invarianee of the Laplace equa-

tion through conformal mapping; the mapping itself' is, indeed,

defined by a Laplace equation. Since the theory of images allows

any incompressible, potential flow defined by given singularities

to be determined in the presence of a circle or a straight line,

the analogous problem in the presence of an arbitrarily given

contour is reduced to the problem of mapping the contour onto a

circle or a straight line. In so doing, the problem of determin-

ing the analytic function representing the complex flow potential

is split into two parts. One consists of finding the potential

for the circle, and that is easy. The other still requires the

determination of an analytic function to define the mapping,

which is as difficult a task as the original problem [4, page

77]. Nevertheless, it is much more appealing to people who have

a visually oriented mind, and it can be subdivided in a number of

successive steps, each one of which is easy to understand

geometrically.

The Joukowski mapping,

I
Z = _ +-- (1)



discovered in 1910 [5], is extremely simple and easy to handle.

Using a circle as the basic contour in the c-plane, it can gen-

erate a two-parameter family of" cusped profiles and a three-

parameter family of smooth contours ranging from familiar el-

lipses to peanut-shaped figures (Fig. 1). Despite their poor

aerodynamical properties, the Joukowski profiles played a crucial

role in the understanding of the mechanism of lift and, conse-

quently, in the establishment of the theory of flight as a sci-

ence. In creating his profiles, Joukowski introduced an idea

which turned out to be extremely rich in consequences: that is,

that a shifting of the center of the circle is sufficient to pro-

duce an airfoil having either camber or thickness or a combina-

tion of both.

Another major contribution dates from 1918 when von

K_rm_n and Trefftz [6] observed that, if (I) is recast in the

form :

z - 2 (__T__)2
z+2 = _ + I (2)

it can be interpreted as a combination of two bilinear mappings

and a power. If _ is used instead of 2 in (2), the K_rm_n-

Trefftz mapping results:

z---z-i- (c--z-_)6 (3)
z +6 _ + I

which, for 6=2-_/_, produces an airfoil with a finite internal

angle, _, at the trailing edge. The property of a power,

6
z= _ (4)

to eliminate sharp corners, was known and had been applied since

the times of Schwarz and Christoffel, but the importance of its

application in (3) should not be underestimated.

The role played by the exponential (and, conversely, the

logarithm) and by all functions directly related to it (direct

and inverse trigonometric and hyperbolic functions) in generating

infinite cascades can be traced back to K@nig, 1922 [7].

Transformations of this kind, for example,

z : e i8 log C-K + e-iB log
_+K K_+I

(5)

V



have essential singularities at infinity. Therefore, the image
of the physical point at infinity in the plane of the circle is
generally a pair of spiral-vortices at a finite distance, a
geometrical property related to the ability of a cascade to de-
flect the flow.

!

i

!
!

Finally, in 1933 Ferrari found the basic mapping for bi-

planes. He showed that a doubly periodic function was needed,

that is, an elliptic function. His paper [8] is the first appli-

cation of elliptic functions to wing theory. [8].

Important as these basic mappings were, they did not

solve the problem of mapping an arbitrarily given contour onto a

circle. They generate a closed contour without sharp corners

which, in a favorable case, may look like a quasi-circular con-

tour which reminds one of a potato (the word "potato" has actual-

ly been used occasionally in the literature to designate such

figures and, although not defined in mathematical terms, seems to

be as acceptable as "quasi-circle"). The technique for the map-

ping of the quasi-circle onto a circle, proposed by Theodorsen in

1931 [9], actually brought conformal mapping from the speculative

level down to practical levels of aeronautical engineering. Its

basic idea is indeed extremely simple; if the center of the cir-

cle and the centroid of the quasi-circle are located in the ori-

gins of their respective planes, and some scaling is used to make

the areas of the two figures coincide, then the mapping can be

expressed in the form:

z : _ ef(_) (6)

: i

where z:re i_, _:e ie and the modulus of f is small. Therefore,

two equations follow:

in r : A(e) , _-e : B(e) (7)

if f : A + iB. On the circle, A and B are conjugate Fourier

series. If in r were known as a function of e, A could be deter-

mined by expanding in r into a Fourier series, and B would follow

automatically. Since in r is known, instead, as a function of ¢,

iterations are necessary to make the two equations compatible.

Alternatively, values of ¢-e can be obtained rephrasing the prob-

lem as an integral equation, so that the formula to be solved by

iteration is the Poisson integral:



27I J

$ In r cot _ d_
0

(8)

Convergence of the procedure is assured if the potato is "star-

shaped", that is, if its contour is crossed only once by any ra-

dius issued from the center [I0]; therefore, the procedure is

generally safe and efficient.

Applications of the Theodorsen method to airfoils, bi-

planes and cascades were pioneered by Garrick [11,12,13], who

used the transformations introduced by Joukowski, Ferrari and

K@nig to produce quasi-circles as intermediate images of given
contours.

For a better understanding of the rest of this paper,

three points should be made.

i) Mapping of a contour into an exact circle was neces-

sary, when problems of incompressible, potential flow had to be

solved, in order to take full advantage of the invariance of the

Laplace equation and of the easy evaluation of the flow past a

circle.

2) Since the only values of interest belonged to the ri-

gid contours, all calculations could be limited to the circumfer-

ence of the circle.

3) Nevertheless, all calculations, with the exception of

the ones related to the Joukowski mapping, were extremely cumber-

some when performed by hand. Most of the time, the Joukowski

mapping was preferred to the K_rm_n-Trefftz mapping. Cascade and

biplane problems were rather analyzed by approximate methods.

The Hilbert integral, with the entire circumference subdivided in

just a dozen intervals, was preferred to the more laborious

Fourier expansions.

Such practical difficulties and the shifting of interest

towards problems in compressible flow contributed to relegate

conformal mapping into the background in the forties. When com-

puters came about, there was not so much a demand for solution of

incompressible, potential flow problems, and the consequent ap-

plication of conformal mapping techniques.

4



2. Conformal mapping as a grid _enerator

|

|

Nevertheless, in recent times conformal mapping has again

been looked upon in connection with problems of compressible

flow, but of course the use of it as a device to solve the same

equations of motion in a simpler plane has been dropped, since

neither the Euler equations nor the Navier-Stokes equations are

invariant by conformal mapping. The reason for revival stems

from the fact that in contemporary numerical gas dynamics the

equations of motion must be solved i__qnthe entire flow field, be-

cause of compressibility effects, viscous effects, presence of

vorticity, etc. Contrariwise, for incompressible, potential flow

it is theoretically correct and practically convenient to search

for the solution on th___eerigid contour only. A computational grid

is necessary, upon which the equations are to be discretized.

When two space-like variables are involved, conformal mapping is

a very convenient tool to generate a computational grid.

If the boundaries of the flow field are mapped onto a

circle centered at the origin of a complex plane _ = pe ie, the

network of p=constant and e=constant lines is conversely mapped

onto the physical plane as an orthogonal grid, well draped around

the rigid contours because the latter are the image of the circle

itself.

Since the grid is orthogonal, the vector operators in the

physical plane can be expressed directly and easily in terms of

their counterparts in the mapped plane.

The search for an appropriate mapping is actually a

search for a single function of a complex variable, a task by far

simpler than the search for two functions of two independent

variables. All the findings "of more than a century, properly

digested and interpreted as briefly shown in Section I, can be

put together to suggest the most appropriate mapping for a par-

ticular task. Our computers have eliminated the tediousness,

inaccuracy and material errors which used to hamper the hand cal-

culations of half a century ago; they also allow the necessary

5



data for a very refined grid to be evaluated in a fraction of a
second. Complexarithmetic in FORTRANand other languages of the

same level reduces coding to just about a rewriting of the basic

equations (except when angles contained in more than one quadrant

are involved).

Practical applications of conformal mappings to generate

grids have been developed in the last decade following two

separate lines. One proceeds from the observation that any con-

formal mapping is defined by an analytic function, and that real

and imaginary parts of the latter are harmonic functions. There-

fore, the con formal mapping problem consists of solving two La-

place equations. The task can be formulated in strictly numeri-

cal terms, using modern, fast Laplace solvers. Thls viewpoint

can be traced back to 1923 [14] and has been made popular

by a 1975 paper by Thompson et al. [15]. The other puts the em-

phasis on the use of closed form analytical expressions for the

mapping functions. It seems that the first non-airfoil related

application of the technique was presented in 1972 [16], although

the same problem was reformulated in a more general form only in

1974 [17]. We will try to analyze here the philosophy of the ap-

proach and to show how it works in practical cases.

3. Philosoph.y of th__ee'closed for____mm'approach

6

We will begin by discussing some of the advantages of a

closed form approach. To fully appreciate them, let us focus our

attention on what the majority of problems of current interest

are: Two-dimensional, unsteady flows or three-dimensional, steady

flows. In the former, the physical space is two-dimensional but

the computational grid may be variable in time; in these cases we

need a grid, generated by conformal mapping at every instant of

time, but depending on parameters which are functions of time.

In the latter, we may find it convenient to create a computational

grid on planes defined by two of the three space coordinates, and

again letting the grid change as a function of the third coordi-

nate. To organize the following formulae, let us stipulate that

the Cartesian coordinates on any plane to be mapped are x and y,

and that a complex coordinate is defined,



÷=

z=x+iy (9)

using the symbol t either _f0r time or for the third space coordi-

nate. The mapping of each z-plane onto another complex plane,

defined by a variable _, will then be accomplished by an analytic

function:

: _ (z;c) (10)

where c is shorthand for any parameter, function of t.

As in every flow problem, it is not so much the coordi-

nate of a point as the derivatives at that point which matter.

First, we need the derivatives of the Coordinates in the physical

plane with respect to the coordinates in the mapped plane, and

vice versa, contained in the complex expression:

dc (11)
g = d-'-z

Then, we need second derivatives, which appear in dealing with

the curl of the velocity vector, and these entail dg/dz. Final-

ly, we need derivatives with respect to t, viz. O_/Ot and _g/_t,

which are computed from (10) and (11) by differentiating with

respect to c and keeping z constant. Obviously, it is very con-

venient to have the mapping expressed in a closed analytical form

since all derivatives are also expressed in closed form and can

be exactly evaluated where and only where they are needed, that

is, at the computational nodes. The argument is particularly in-

teresting with regards to the t-derivatives. If the grid changes

in t, the Values_of z generaliy change in t at each nodal point;

therefore, numerical differenhiation at a constant z may be

cumbersome and inaccurate.

There is another case where having a closed form mapping

is convenient. Potential (but not incompressible) flow problems,

with the flow field extending to infinity, are commonly solved by

relaxation. Commonly, the physical potential is expressed as the

sum of an unknown and the potential of a flow, satisfying the

proper physical conditions !_ at infinity. The latter is easily

formulated in terms of the transformed variables if the mapping



is defined by a closed form function.

Then, a difficulty seemsto arise. As we said in Section
I, in most cases it is not possible to find a closed form mapping
which provides an exact circle as the image of a given contour;
it is clear that Theodorsen's step is not a closed form function.
Nevertheless, the difficulty is only apparent. Let us assume,
indeed, that we know a function capable of transforming a given
contour into a quasi-circular potato. Let us consider a computa-
tional plane with two variables, X and Y, relating X to p and Y
to e. The functions X(p) and Y(O) will be so defined that X=0,
Y=0, X=I and Y=I on each boundary, in turn. The computational
region in the (X, Y) plane is, thus, the interior of a square.
In most cases, the functions X(p) and Y(e) are used to apply
proper stretching of coordinates in either direction, in order to
concentrate nodes where necessary. The computational grid is
orthogonal and divided into equal intervals. The corresponding
grid in the _-plane is not orthogonal (not only because the X=0
line is not an exact circle, but also because the other boun-
daries maynot be circles or straight lines either). Consequent-
ly, the grid in the physical plane is not orthogonal. Accuracy,
however, is not impaired for want of orthogonality. The equa-
tions, originally written in the (p,e) frame, are recast using X
and Y as independent variables. Someadditional terms will ap-
pear; the very important boundary condition on the rigid surface
will be properly written by stating that the normal velocity com-
ponent (not just the p-component) vanishes. In conclusion, we
are not expecting any dramatic advantage from having a circle as
one of the boundaries, and therefore we mayconsider our mapping
problem solved whenwe find a quasi-circle as the mappedimage of
the given boundary. The Theodorsen step can be dropped with all
its additional burden of iterations, Fourier expansions, spline
fittings, etc. :....

Let it be clearly stated that we are not afraid of unsur-
mountable difficulties or unaffordable computational times con-
nected with the Theodorsenstep. That old (but hard to execute
by hand) way of computing Fourier expansions, which has been
given a newpopularity under the FFT label serves the purpose
egregiously well. Dropping the Theodorsenstep, whenever possi-
ble, is justified by our desire of achieving a solution to the
problem in a closed form, with a view to the formal calculation

V
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of derivatives, particularly with respect to t. There is a de-

finitive need for them in all problems where the grid depends on

t.

This philosophy was clearly exposed in [16] and accepted

by Jameson [18,19]. We will discuss some applications in Sec-

tions 5 through 8. Before that, we will mention some of the

techniques which we tend to classify as numerical, rather than

analytical.

4. Conformal mapping as a Neumann problem
-- L

I The closed form approach may look like an empirical at-

tempt to solve the problem, on the basis of analogies and ima-

ginative variations, and therefore strongly dependent on the men-

tal structure of the investigator. I have heard the word "art"

used in a derogatory sense in connection with this type of work,

on other occasions. Actually, good science is the product of

personal ingenuity and crafty skill. What tends to be classified

as "scientific" in these days is rather "technological", that is,

some process which has been sealed in a black box for general

put pose s.

Whatever the consequences, there is no doubt that the

quest for an organized conformal mapping procedure is legitimate.

It is also classical. Green's formula:

8v v _n)dS = 0 (12)(u a-"_-

for two harmonic functions, u and v, regular in the domain sur-

rounded by the closed contour on which the integral is made, and

on the contour itself, dates from 1828. With any two points on

the contour denoted by _=pe ie and z=re i¢, and with _-z=oe i_, it

follows from (12) that

I f [u(_) _In ou(z) = - ¥ -_n
_u in o] ds (13)
%-6

All formulae related to conformal mappings can be obtained from

(13); _u/3n is generally known from its conjugate, the variation



of the tangent along the contour.
equation for u.

Then (13) becomesan integral
V

]0

Many different forms of the equation can be obtained, if

one makes use of well-known properties and formal rules, such as:

the Cauchy-Riemann conditions, integration by parts, Schwarz and

Poisson's integrals, integrals defining the coefficients of a

Laurent series. Different forms are also obtained by taking the

basic contour as a circle or as a straight line, and by defining

u either as the logarithm of z or as the logarithm of g. For ex-

ample, if we start from (6) and from a circle, the other contour

being a quasi-circle, we obtain the Theodorsen mapping in its in-

tegral form (8); the Fourier series form follows easily. The same

equation (6) and somewhat different integral equations have been

used by Symm [20] and Hayes et al. [21] to produce numerical

techniques which are not restricted to mappings of quasi-circles

onto circles, as in Theodorsen's, but apparently can handle any

(probably, star-shaped) contour. If we use the logarithm of g,

we can interpret Theodorsen's ideas in terms of derivatives, _ la

Timman [22], a variation which seems to offer some numerical ad-

vantages [17]. If we start from a straight line and an arbi-

trary, closed contour, using again the logarithm of g, we obtain

what Davis [23] presents as a generalization of the Schwarz-

Christoffel mapping to a polygon with an infinite number of in-

finitesimal vertices:

I
log g : _ I log (_-b) dB (14)

Anyone interested in these types of comparisons could profitably

read a paper by Birkhoff et al. [24] which is outdated only from

a computational viewpoint.

Proceeding in the opposite direction as Davis, the

Schwarz-Christoffel formula for a polygon with a finite number of

vertices can be found as a particular case of (14). This formula

is, in principle, a very powerful mapping tool. It can map a po-

lygon on a circle, without restricting number, location and aper-

ture of vertices, or the lengths of the sides, and permitting

vertices to be located at infinity. It is really a definition of

g, rather than of _, which must be obtained by complex integra-

tion in a numerical form, in almost all the cases. This is not a

major shortcoming, however, since numerical integration can be



performed quickly and efficiently. The derivative, dg/dz is
straightforward. Nevertheless, it is known that the coeffi-

cients, _i and 6i which appear in the formula

o

g = n (_ - _i ) i (12)

must be obtained by trial-and-error iterative processes (see, for

example, [23,25,26]). If the grid does not depend on t, its

coefficients can be determined once and for all. In this case

the Schwarz-Christoffel formula belongs to the category which we

consider in the present paper. It does not if the grid depends

on t. The same may be said for all mappings obtained by solving

a Neumann problem via iterations on an integral equation or

Fourier expansions.

5. K_rm_n-T__refftz mapping for airplane cross sections

i

We will now consider some mappings using a finite number

of closed form relations.

The numerical analysis of a steady, supersonic flow past

an airplane may be performed by marching in an axial direction

and updating values at successive cross-sectional planes. The

region of interest in each plane is bounded by the section of the

body and the section of the bow shock. Conformal mapping of the

body onto a quasi-circular shape provides a grid which tends to

become a polar grid at infinity and therefore is the best suited

to adjust to the shape of the body, whatever it is, and to the

almost circular shape of the bow shock. The body shows a number

of edges and corners as those indicated by letters in Fig. 2. If

the airplane is arrow-winged, stations will be reached where the

body will be composed of three unconnected parts; if two ficti-

tious lines are drawn between the fuselage and the trailing edges

of the wings, again we can see corners and edges at all points

denoted by letters in Fig. 3. Observing that the corners and

edges always come in pairs, because of the symmetry of the cross-

section, we can think of eliminating them by successive applica-

tions of the K_rm_n-Trefftz mapping (3), with the singular points

11



either on the contour or, in case of rounded edges and corners,
slightly inside. Note that edges require values of _ between I
and 2 and corners require values of 6 less than I. When the
latter are applied, the corner is open, but so is the rest of the
plane, part of which may end up in a second Riemann sheet. In
principle, this is not an obstacle to the removal of corners, be-
cause the portion of plane which disappeared will be recalled
whenremoving the next edge. In practice, a quite cumbersomead-
ditional piece of logic must be added to identify points belong-
ing to the second Riemannsheet. The trouble can be avoided by
executing the mappings not according to the order of appearance
of a corner or edge along the contour but in a sequence of de-
creasing values of _.

From the viewpoint of coding, the repeated application of
the Karm_n-Trefftz procedure has manyadvantages:
I) Regardless of the number, position and aperture of corners

and edges, the same operation is used, which means the code may

be written in the form of a loop and applied as many times as

necessary, automatically,

2) The mapping can be inverted, and the inverse mapping has the

same form; therefore, the same routine can be used for the direct

and the inverse mapping,

3) The derivatives are easily coded; for example g, as defined

by (11), is actually the product of the derivatives of each in-

termediate step, and the logarithmic derivative of g is the sum

of the logarithmic derivatives of such steps.

To show how close to a circle the image of a fuselage

with two sections of arrow wings is, Fig. 4 presents a computa-

tional grid in the physical plane and its image in the mapped

plane. Naturally, with the bow shock very close to the leading

edge of the wings, its own image is far from a circular shape

but, as we said above, departure from orthogonality of the grid

is not jeopardizing accuracy, and this is particularly true in

the vicinity of the bow shock, where the flow is uncomplicated.

Details of the technique and its application to the arrow-winged

airplane problem can be found in [17].

12



6. Imaginative devices

There are no limits to the number of shapes which can be

obtained by executing elementary mappings in a sequence and using

a little ingenuity. Indeed, bilinear transformations, powers and

logarithms are the building blocks with which one should learn to

play, always keeping in mind that rotations and translations can

be cleverly used to locate singularities where needed. Here is

an interesting example, due to Rossow [27], which is entirely ex-

pressible by a sequence of bilinear mappings and powers (Fig. 5).

A circle, centered at the origin, is translated upwards

and then a Joukowski mapping changes it into an arc of a circle,

counted twice. The arc is rotated about one of its ends and a

new singular point is defined somewhere along its length. A new

Joukowski mapping is applied, in reverse, so that the portion of

the arc between the two singular points become a circle again,

and the portion left outside remains appended like an infinitely

thin tail. Finally the circle is relocated, and a third

Joukowski mapping is used to transform it into a Joukowski pro-

file; the little tail becomes a flap or spoiler, whose location

and length can be controlled by changing the parameters used in

the successive steps. According to our quasi-circular philoso-

phy, this very simple mapping can be used for any airfoil with

attached (but not infinitely thin) spoilers or flaps.

i

I faced a similar problem when confronted with generating

a grid for the calculation of the precursor muzzle blast [28]. I

needed a grid shaped as in Fig. 6; the contour defined by D'C'CD

can be mapped onto the real axis of a w-plane, and its exterior

onto the upper half w-plane by a simple Schwarz-Christoffel

transformation [29, page 159], but this mapping would not provide

a family of grid lines issuing from what has to be interpreted as

the bore of the gun and wrap around the barrel, as in the figure.

The problem was solved by defining two new singular points, B and

B', in the w-plane and applying to this plane an inverse

Joukowski mapping onto a s-plane. Radial straight lines and con-

centric circles in the s-plane are now producing the wanted grid

13



in the z-plane. Note that the position of B and B', being arbi-
trary, permits the ratio of outer-to-inner radius of the barrel
to be matched (Fig. 7). With the changeof notation: w : Z +
I/Z, which simplifies the coding, the mapping is thus defined by:

z : (ro/_)[(Z2_i/Z2)/2 = log Z2 - i_]

(15)
Z + I/Z = 2 B (_ + I/_)

In the problem just described, the computational region

is limited, on one side, by the precursor shock which moves out

in time. Therefore, the computational grid is a function of

time, but the dependence on time shows only through the stretch-

ing parameters; the mapping itself remains invariable in time and

the equations of motion carry no terms of the type 8g/_t or

_/at. When a mapping is needed for the same problem in the

presence of a protruding bullet, however, the contour itself

changes in time and so does the mapping. Once more, the problem

can be solved with little additional effort. One can start with

a half circle (Fig. 8), reduce it to a half ellipse using a

Joukowski mapping, and then apply a Karm_n-Trefftz formula to

change the angles between the contour and the real axis. After

that, the mapping continues as defined by (15). The axis ratio

of the ellipse keeps growing as the bullet nose advances. The

power in the Karm_n-Trefftz mapping decreases from an initial I

to a minimum value of I/2. At this stage, the contour in the

physical plane makes a 90 degree turn at B and B', ms required to

accomodate the grid to the side surface of the bullet (Fig. 9).

V

7. Different mappings fo____rth___eesam____egeometry

14

In solving problems of incompressible, potential flow

there is no ambiguity about the choice of the mapping since the

contours of interest are specified exactly and the mapping func-

tion has to be regular over the entire flow field (boundaries ex-

cluded). In the present context, though, different mappings may

accomodate the same contours but generate completely different

grids, as we have mentioned in the preceding Section. Care must

be taken to use a mapping whose grid is the best suited for the
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problem in hand. This problem is currently acute in cascade

analysis, as we will mention later; here I would like to show it

in a simpler connection.

We want to generate a grid for the intake of which Fig.

10 shows the centerline and the shroud. We can drape our grid

about a semi-infinite slit, parallel to the real axis in the

upper half-plane, two mapping functions, apparently opposed to

one another, can serve the purpose. The first is:

z : _ + e¢ (16)

This function maps the slotted half plane onto a strip, which is

a very convenient domain for our computational variables X and Y.

The corresponding grid (Fig. 11) is convenient for the interior

of the intake, but it needs some stretching to provide resolution

to the exterior of it; in particular, the outer surface of the

shroud is poorly resolved. The other mapping is defined by:

z :_ + a log i17)

and it maps the same region of the physical plane onto the entire

upper {-half-plane. Cartesian coordLnates in the _-plane produce

the grid of Fig. 12. In this case, the grid is very good outside

and very poor inside. If we start from polar coordinates in the

_-plane, we obtain the grid of Fig. 13. The general appearance

of the grid lines recalls Fig. 11, but the situation is reversed:

the resolution is very poor inside and very good outside; in this

case, an accumulation of p=constant lines near the origin of the

_-plane is necessary to generate some coordinate lines inside

the intake. An application of (16), with a stretching of coordi-

nates to relax the resolution inside the nacelle, has been made

by Caughey and Jameson [30].

Anyway, these mappings are obtained in a very straight-

forward manner, and more complicated manipulations [31] do not

seem necessary.

15



8. Biplanes, revisited

Ives [32] has proposed a technique for the mapping of two

airfoils which is rich in possible consequences. We have seen in

Section 5 how the successive application of Karman-Trefftz map-

pings can eliminate corners and edges on a contour, producing a

quasi-circular shape. A similar idea, exploiting the theory of

images with respect to a circle, allows two airfoils to be mapped

on two concentric circles. Two Theodorsen mappings are used as

intermediate steps, as follows (Fig. 14). First, a Karm_n-

Trefftz formula is applied to transform one of the airfoils into

a quasi-circle, and then the quasi-circle is transformed into an

exact circle by the Theodorsen technique. At this stage, the

second airfoil is still shaped as an airfoil although with a dif-

ferent shape. The next step manages to transform the second air-

foil into a quasi-circle, without distorting the first circle.

The problem is solved by using the product, side-by-side, of two

Karman-Trefftz formulae; the first contains the two singular

points pertinent to the second airfoil (a and b) and their coun-

terparts in the mapped plane (_ and 8); the second contains the

images of such points (I/a I/b and r2/a * _ *' o ,r /8 , respectively,

where conjugates are denoted by * and r is the radius the image
o

of the first circle in the mapped plane):

(_-_)(_-r_/_*) •
• : [(z-a)(z-1/a )]6

(_-B)(_-r_/6) (z-b)(z-1/b*) (18)

Finally, the second quasi-circle is moved inside the first circle

by a bilinear transformation in such a way that its centroid

coincides with the center of the circle, and a second mapping of

the Theodorsen type is applied. Again, such a mapping must take

into account that the flow region is a ring between two concen-

tric circles. Therefore, the exponent in (6) cannot be a simple

Taylor series, as it would be if the flow occurred inside a cir-

cle, or a Taylor series of negative powers, as it would be if the

flow occurred outside a circle, but it must be a two-sided

Laurent series; we express this need by saying that the Theodor-
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sen mapping is defined in this case by:

f(_;c)-f(I/_;c ) (19)
Z : _ e

where c is any constant occurring in f(_) [12].

The idea of using the images of the singularities with

respect to a circle in order to operate on the other contour

without distorting the circle can surely be extended to problems

dealing with two separate contours but not necessarily airfoils.

Two questions can be posed. First, how can Ives' tech-

nique produce the mapping, without using elliptic functions? The

explanation can be found in the fact that the sequence of map-

pings used by Ferrari and Garrick consists of a logarithm, fol-

lowed by an elliptic function. The net result actually has _ only

one period, the other being neutralized by the multi-valuedness

of the logarithm. On the other hand, the periodicity is intro-

duced in Ires' mapping through the play of reflections of singu-

larities produced by (19). The second question is whether one

could bypass the two Theodorsen corrections, in the spirit of

Section 3 above. Of course, in this case we would have to deal

not with one distorted circle alone, but two, the first being

particularly important since the images of (19) would, in any

case, be defined with respect to a circle which now would only be

an approximation to the real contour. I believe that the tech-

nique could still be applied, but no examples are available.

9. Cascades

The climax of difficulties is reached in the problem of

generating a grid to compute flows through a cascade of airfoils.

Garrick [13] sensed the difficulty well ahead of the computer

era, but he did not have a way of measuring it; as we said, hand

computations were necessarily limited to the simplest cases. He

said: "It is to be noticed that improvements in the initial

transformation are desirable and should be sought, particularly

to take care of highly cambered airfoils more conveniently, in

I?



order to reduce the amount of subsequent calculations.,, At that
time, the initial transformation was the one defined by (5), ob-
viously a poor way to get started whendealing when highly cam-
bered airfoils, since the basic shape furnished by (5) is a cas-
cade of flat, straight, double-sided segments. Unfortunately, in
a cascade four parameters must be considered, solidity, stagger,
camber and thickness, and these parameters interact with each
other, whatever the choice of the basic mapping. So long as
solidity and stagger are low, even (5), applied to a moderately
thick and camberedairfoil, produces a reasonable quasi-circle.
But as solidity and stagger increase, the contour tends to become
peanut-shaped (Fig. 15), with a catastrophic distribution of
points around it (something like a wide circle, corresponding to
a small portion of the original profile, with a small appendix,
which is the image of all the rest); and, at times, the contour
is not even star-shaped any longer. Can (5) be blamed for such a
behavior? A detailed discussion of this question would transcend
the limits of the present paper; let it just be said that the
difficulty does not disappear when another mapping function,
adopted by Legendre [33] and Ires [34], is used (Ires' function
is the sameas Legendre, to within a rotation and a bilinear
transformation). This mapping can be written in the form:

[_ + b]6 sin A(z - I)
_----_" = sin A(z + I) (20)

where z and _ are the physical plane and the mapped plane,

respectively, I and -I are the location of the trailing edge and

the center of the leading edge of a profile, respectively, 6 is

the usual Karm_n-Trefftz exponent, A is related to solidity and
stagger by

V

V
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and

2i A :v se i8
(21)

b = - i tan
(22)

So far, the major advantages of this transformation with respect

to (5) are the presence of an exponent, _ to produce profiles

with a finite trailing edge angle, and the possibility of comput-

ing either _ as a function of z, directly from (20), or z as a

function of _ from the inverse of (20):
V



i
z : - I --_ log

2iA 6
e - w

-2iA 6
e - w (23)

with

w = _---+b (24)
- b

Whenstagger and solidity are high, most of the skill which must
be used to follow the contour properly in applying (20) is wast-
ed, due to the ungainly shape of the resulting contour. More
manipulations are needed before a quasi-circular shape is ob-
tained; but we will not elaborate on this point in the present

paper.

Let us assumethen, that a circle has been obtained
somehow from the given cascade; and, in the spirit of Section 3,
we will gladly accept a quasi-circle, without refining the map-
ping any further. At this stage, we must decide what type of
grid we want. Different choices can indeed be made for the gen-
eral appearance of the grid. Three of these are the most common
(Fig. 16). The first contains lines which run from left to right
through the cascade, more or less as streamlines of a real flow
would do. The second (commonlycalled an O-grid) contains lines
wrapped around each profile. The third (commonlycalled a C-
grid) contains similar lines which run around the profile and an
infinite line issuing from the trailing edge, as a wake. Now,
regardless of the choice of the first mapping step, the plane of
the circle will always have four singular points, representing
the points at infinity (on the left and the right of the cascade)
and their re{lections on the circle. If we invert the circle
plane so that the interior of the circle corresponds to the

exterior of the cascade, then the two singular points inside the

circle represent the physical points at infinity. A system of

streamlines and equipotential lines for an incompressible, poten-

tial flow, proceeding from one singular point to the other and

having stagnation points at the points on the circumference which

correspond to the leading and trailing edge, provides a grid of

the first type. In building it up, one finds numerical difficul-

ties. It is indeed hard to follow a streamline on a spiral vor-

tex when the singular point is very close to the periphery of the

circle (this is what happens with high solidity and high

]9



stagger).

Polar coordinates are very simple to use, but they gen-
erate a very inconvenient grid because of the _resence of a
singularity in the flow field between profiles, at the point
corresponding to the center of the circle [35]. (See Fig. 17.)

For an O-grid, the best procedure has been suggested by
Ives [35]. It consists of mapping the circle onto a rectangle,
in such a way that two vertices correspond to the singular points
(points at infinity in the physical plane) and the opposite side
corresponds to the circumference (the contour of the profile).
The basic function defines the correspondence shownin Fig. 18
(where there is a straight slit between the two singularities).
In the same figure, lines corresponding to straight lines, paral-

lel to the sides of the rectangle, are shown inside the circle.

The function which performs the task is the simplest of the Jaco-

bian elliptic functions:

z : sn (¢, m) (25)

where m is defined by the position of the singularities and tends

to I when solidity and stagger increase. Using Landen's

transformations, the sine-amplitude can be expressed in terms of

trigonometric functions (for m close to O) or the hyperbolic

tangent (for m close to I); the coding of the subroutine is obvi-

ous and the computational time is negligible. Therefore, (25) is
a convenient function.

2O

Note that the circle (or quasi-circle) obtained through

(5) or (20), and the circle obtained from (25) are by no means

the same, despite the fact that in both planes the images of the

points at infinity are symmetrically located on the real axis.

The second circle is centered at the origin, but the first is

not; therefore, a bilinear transformation must be used to map the

two circles onto each other. This mapping depends on all four

basic parameters and the trailing edge angle as well. Its in-

terpretation, thus, is not easy, but a systematic study is needed

to understand what range of basic contours, acceptable as a back-

ground of a grid for given profiles, can be obtained by using

(25), a bilinear mapping and (23), in that sequence, without

resorting to a Theodorsen step. It seems to me that we either



have reasonable shapes, in which case that step can be skipped,
or combinations of solidity and stagger which tend to generate
intermediate shapes similar to the one on the right hand side of
Fig. 15, in which case the Theodorsentechnique would not work,
and where another intermediate step, of a different nature,
should be used. Even Joukowski mappings mayhelp (see the last
contour in Fig. I). Work along these lines is urgently needed,
if we want to obtain simple mapping procedures for three-
dimensional turbomachinery problems. To make the point, we
present a three-step sequence, in which the first circle, ob-
tained from the rectangle, is the one of Fig. 18. A second cir-
cle (Fig. 19) is obtained by a bilinear transformation and the
cascade, obtained through (23) is shown in Fig. 20. The contour
is ugly, but the grid is perfectly usable.

three-dimensional bodies
10. Grid_ss for ablated,

We conclude this presentation showing a method applied to

generate a computational grid for a three-dimensional, time-

dependent problem. The flow to be determined is the shock layer

around the ablated nose of a cone-cylinder; the flow is mostly

supersonic, but it may have a subsonic bubble and an imbedded

shock. The geometry of the body, which is axisymmetrical before

ablation, becomes three-dimensional because of different ablation

in different meridional planes. A grid is needed in a number of

these planes, and corresponding points must be connected between

adjacent planes, in order to generate a three-dimensional compu-

tational mesh. It is therefore convenient to have a grid defined

in closed form, to make the evaluation of circumferential deriva-

tives as easy as possible. For a given section of the body (Fig.

21) we define a skeleton, that is, a polygon, all contained in-

side the body, approximating the shape of the wall. Instead of

using a Schwarz-Christoffel function to transform the skeleton

into a straight line in a single operation, we have opted for

straightening one vertex of the polygon at a time, beginning with

the one farther from the nosetip. As in the case of the repeated

K_rm_n-Trefftz mappings, the procedure is easily coded in a loop.

The last step consists of a square root transformation, in order

to bring the skeleton on the real axis and the body axis on the

21



imaginary axis of the _-plane. The image of the wall on the
_-plane is close to a straight line. The grid, which will be
normalized between the image of the wall and the image of the bow

shock, is always well shaped, despite strong concavities of the

body produced by severe ablation. The method, first tested on

axisymmetric problems [37], has been successfully applied to

three-dimensional problems [38].
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Figure 3.- Cross-section of fuselage and arrow wing.
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Figure 4.- Grid for fuselage-and-arrow-wing calculation,

in physical plane and mapped plane.
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Figure 5.- Generation of wing with attached flap.

Figure 6.- Grid for muzzle blast calculation.
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Figure 9.- Grid for muzzle with

protruding bullet.
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Figure i0.- Nacelle geometry.

2g



L

Figure 11.- Grid generated by equation (16).
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Figure 12.- Grid generated by equation (17),

Cartesian coordinates.



LE

•s_iD_ D DT_u_DuoDo_
o_uo SlTOgaT_on_ _o ZuTdd_ -'?I _an_Tl

jJ

_'J-2 x

•so]_u_p=oo_ _lod

_(LI) u°T ]_nb_ %q p_u_ pT_o -'If _nZT_



(rQ

,"t
m

Cr,

I

H-,

(D

o

_z
ZL
m

ii



Figure 17.- Frith's grid for cascades.
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Figure 18.- Circle mapped from rectangle,

equation (25).
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Figure 19.- Circle mapped from cascade, equation (20).

Figure 20.- Cascade obtained from circle of Figure 19.
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Figure 21.- Grid for ablated body.
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GRID GENERATION USING DIFFERENTIAL SYSTEMS TECHNIQUES*

Joe F. Thompson and C. Wayne Mastin

Department of Aerospace Engineering

Department of Mathematics

Mississippi State University

Mississippi State, MS 39762

I. INTRODUCTION

In recent years a multitude of techniques has been developed for

generating computational grids required in the finite difference or

finite element solutions of partial differential equations on arbitrary

regions. The importance of the choice of the grid is well known. A

poorly chosen grid may cause results to be erroneous or may fail to

reveal critical aspects of the true solution. Some considerations

that are involved in grid selection can be noted from the papers of

Blottner and Roache [i], Crowder and Dalton [2], and Kalnay de Rivas

[3]. While these papers discuss error for one-dimensional problems,

few results exist for higher dimensions. This report will examine the

errors in approximating the derivatives of a function by traditional

central differences at grid points of a curvilinear coordinate system.

The implications concerning the accuracy of the numerical solution of

a partial differential equation will be explained by considering several

numerical examples. Although this study only considers the two-dimensional

case, the techniques and implications are equally valid for three-

dimensional grids.

An interesting feature of the error analysis in this report is its

simplicity. Most of the results follow by merely working with the trunca-

tion terms of some power series expansion. It is noted that these series

expansions also glve rise to higher-order difference approximations

which can significantly reduce error when the grid spacing changes rapidly,

as might be the case in problems with shock waves or thin boundary layers.
I

*This research was sponsored by NASA Langley Research Center under

Grants NSG 1577 and NGR-25-O01-055.
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When transforming a partial differential equation from rectangular

to curvilinear coordinates, the derivatives of the functions defining

the transformation must be evaluated. If the relation between rectangular

and curvillnear variables is given by a simple analytic expression, the

transformation derivatives may be computed either analytically or

numerically. Truncation errors in both cases are considered for

comparison.

One objective of this work is to provide tools to examine a grid,

together with a computed solution, and predict possible inaccuracies

due to the grid. The grid may thus be redefined to give a better

solution. Directions for future work could be an extension to higher

dimensions of the one-dimensional grid optimization technique of Pierson

and Kutler [4].

This report also discusses the control of coordinate line spacing

through functions incorporated in the elliptic generating system for

the curvilinear coordinates. Attraction of coordinate lines to other

coordinateiines and also attraction to fixed lines in physical space

are covered. Appropriate forms of the Control functions required to

produce desired spacing distributions are derived. Finally a procedure

for distribution of points around a boundary curve according to local

boundary curvature is given. In addition a few examples of recent

generation of coordinate systems are given.
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II. TRUNCATION ERROR ANA]_SIS

Suppose a curvilinear coordinate system is generated by trans-

forming an arbitrary physical region of the xy-plane onto a rectan-

gular computational region of the C_-plane. The relationship between

partial derivatives of a function f with respect to physical and

computational variab]es is well-known. It will be included here for

later comparison with approximations derived from series expansions.

Only first and second order derivatives will be considered:

8f _x Df + SY ___f
T_- a_ _x a_ _y

a2f _2 x _f

2 3x
_ _2

___xx__X D2f
+ _2y _f + ,_x. 2 _2f + 2 _ _ "ax_y

_2 _-_ (_) _x 2

2 _2f

+ (_$) _y2

2 __ Sx _x _2f
Z2f _2x _f + D j__ _f +

%_an = _---_x a_n ay a_ an _x2

_x _y _x ___)_2f _l! ___v- _2f

+ (-_ _+-_ _ _--_-yy+ _ _ _y2

(i)

The derivatives with respect to _ can be obtained by replacing _ with

q in the first two equations of (i).

Although this change of variables formulation can be easily used

in deriving difference approximations for derivatives with respect to x and y,

nothing can be said about truncation error. An error analysis can, however,

be based on Taylor series expansion of function values at neighboring points

about a single point in the physical region. In order to distinguish

between derivatives and differences in the following, the differential

notation is used for derivatives while subscripts denote the usual

second order central difference expressions. The following approximations

for the central differences are valid when all series are truncated after

ORIGi}7_L P _"_" r[{
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second derivative terms. A unit mesh width in the _D-plane is assumed

without loss of generality.

_f _f 1 _2f

fg = x_ _ + yg -_y + _xgxgg ax 2
i _2f

-- + _(x_y_ + y_x_)_xSy

1 a2f

+ 2 Y{Y_{ 8y2

= af 8f 1 2._2f 1
f6_ x _x + y_ _y + (x 2 + + +

4--xgg )ax-----_ 2(xSyg _g¢ygg)

_2f
+ a2f 2 1 2

_x_----y+ (Y_ + 4Y<_ )8y2 (2)

af af ½((x2)_ 2xx )-----7f_n x{D _-+ Y_n _-y + "a2f

_ _x z

_ )32f 1 2 )82f

+ ((xy)_n - xy_n YX_n _---_y + _((Y2){n - yy{D

Together with the corresponding two equations for f0 and fn_, this

constitutes a system of five simultaneous equations which can be solved

to produce difference expressions of two first and three second derivatives

of f with respect to x and y. Assuming the third order derivatives of

f are bounded, the truncation error in the above expressions is O(h3),

where h is some measure of the local mesh spacing. Consequently, when

(2) is solved for the difference approximations of the physical derivatives

of f, the truncation error is O(h 2) for first derivatives and O(h) for

second order derivatives. In contrast, solving the system (i) with the

f, x, and y derivatives replaced by differences (and including the

corresponding equations for f_ and f_q) simultaneously to produce expres-

sions for the five physical derivatives of f gives rise to O(h) and 0(i)

truncation errors for the first and second order derivatives.

In both cases it has been assumed that the coefficient matrices on

the right hand sides of (I) and (2), i.e., the coordinate derivatives,

including the omitted n differences, are well conditioned. Ill conditioned

matrices which may result from extremely skewed coordinate lines could

cause further deterioration in accuracy. Higher order accuracy can be

4O



obtained using (i) if second order coordinate differences are assumed

to be O(h2). This effectively limits the rate of change in coordinate

line spacing and the curvature of coordinate lines, however. No

simple relation between the coefficients of the second order derivatives

in the last equation of (i) and (2) was found except for the fact that

they would be equal if the differences in (2) were replaced by deriva-

tives.

The variation in numerical solutions using (i) and (2) is illustrated

in the solution of Laplace's equation. The function

u(x, y) = x(l + i/(x 2 + y2))

satisfies Laplace's equation for x 2 + y2 > i and has a vanishing normal

derivative on the boundary. This boundary value problem was solved

numerically on i E x 2 + y2 _ i00. A grid was selected with 39 radial

coordinate lines and 49 circular coordinate lines. The first 23

circular coordinate lines were uniformly spaced after which the spacing

was increased by a factor of 5. The difference between the exact and

numerical solution is indicated in Figure i for difference equations

derived from (i) and (2). The effect of the sudden change in coordinate

line spacing was clearly less severe when using difference expressions

from the higher order series expansion.

A similar error analysis can be carried out where the derivatives

of x and y with respect to _ and n are computed analytically rather than

approximated by differences. In this case a series expansion in the

_q-plane is required, followed by substitution of expressions for the

higher-order _ and n derivatives in terms of the x and y derivatives

(see Ref. 5 for complete detail). Retaining physical derivatives of f

through second order, as in (2), the following approximations are

generated. The second derivative approximations, f_ and fen, are very

lengthy and only the first and second order derivatives of x and y are

included here, the complete expressions being given in Ref. 5. The

first derivative approximation includes third order derivatives:

k_J
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f_ =

f
&q

_x
1 83x. af _y 1 a__)_f 1 Sx _2x _2f

+6a-_+ (_+_a_3_+2 a_a_2ax2

+ a2x._2f i _ _ 32f
1.ax_ + _ a-7_-_; +
2-_-_ _ 2 _ 2 _$ _2 _y2

_2X 3f + ____ _f + ((_f i a2X 2, _2f
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1 _2X __2y_)_2f _ 2 2
i__a-y.._2f

+2(_ _ +4 a2 a_2_-##fy+ (( +
4 (252 } )_y2

_2X _ f _.i__ _f 8x _ 1 32X (_2x + _2x.._2f

_q 3x + _q a--y+ (-_-_3q 2 3_aq _2 _---2))3x---_

+ ax_ 1 _2 .___z __i_)1 32
+ (_$x Bq _)q _)_ 2 _-_n('3_2 + Y--an2 2 _(_n

(a2x + a2x))32f + i _ (_ __))_2_._ff
a_ 2 a'rl 2 _ (_ __X _ _ __ +

_q 2 a_n _)_2 aq2 _y2

(3)

Considerable similarity exists between the approximations in (2)

and (3) and corresponding statements can be made about the effects of

the coordinate system on truncation error. For example, it can be noted

that for the first derivative approximations to be second order accurate,

the second and third order derivatives of x and y must be O(h 2) and

O(h3), respectively. Due to the additional restriction on the third

order derivatives, it is not difficult to find examples where solutions

of (i) with numerically computed derivatives of x and y are much more

accurate than solutions using the analytical expressions for these

derivatives.

With reasonable care in the selection of the grid any of the above

difference formulations will give equally good results. For example,

consider the grid for the region about a Joukowski airfoil depicted in

Figure 2. This grid was constructed by the conformal mapping of an

annular region with uniformly spaced circular coordinates. As in the

above example, Laplace's equation is solved with vanishing normal

derivative imposed on the airfoil. The solution is the velocity potential

for flow about the airfoil at zero angle of attack. Table 1 indicates the



_,_j the difference between the computed solution and the exact solution

on the surface of the airfoil where the error was greatest.

Table i. Comparison of Difference Formulations

Differencing Method Max Error | RMS Error

Taylor Series (2) .03123 1 .00864

Analytic (i) .02216 .01256

Numerical (i) .02411 .00795

For this example there is clearly no advantage in using the difference

expression from the series expansion in (2) over using (i) with the

derivatives of x and y computed either analytically or numerically.

There is another aspect to the question of the use of analytically

calculated coordinate derivatives, as opposed to numerical difference

representatives, when fully conservative difference formulations are

used. In that case the formulation will not be fully conservative with

the analytical expression in the sense that a uniform solution on the

field will not be strictly preserved. This can lead to instability if

the differences of the coordinate derivatives are large.

Thus far only problems of error which deal directly with the coor-

dinate system have been considered. This source of error can be controlled

by limiting the higher order differences of derivatives of x and y. A

more serious problem in numerical computations is the error in the approxi-

mate solution which results from large higher order derivatives of f.

In transforming from physical to computational variables, the derivatives

of f with respect to _ and _ are replaced by differences regardless of

whether derivatives or differences are used for x and y. The truncation

error in approximating the computational derivatives of f can be minimized

to some degree by a properly chosen grid. However, there are limitations

in the grid choice since, as we have previously observed, a highly dis-

torted grid also contributes to large truncation errors in the approxima-

tion of the physical derivatives of f° To analyze the total truncation

error due to solution and grid, it is convenient to introduce matrix

notation.

Suppose the derivatives in the physical and computational planes

are related by (i). This relation can be written

A = AD
(4)

where
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Difference expressions for D are generated by replacing the elements

of A (and possibly A) by the appropriate difference approximations. If

the truncation term is retained, the equation (4) becomes

6+E =AD

where 6 is the vector containing the difference approximations and

I a3f

6 aE3

1 D3f

6 _n3

i 84f

12 D$4

!ca4f__+ a4__i_f)
- _£ an aEan 3

1 _4f

12 _n4

(5)
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Solving for D in (5) we have

D A-16 + A-I (6)= g

Now _ is unknown but can be estimated using differences of f.

Although such numerical differentiation does not tend to be very

accurate when applied to an approximate solution of a partial differ-

ential equation, the value of A-IE has been used successfully to

distinguish regions of high error from regions of low error. This can

be illustrated by returning to the numerical solution of potential flow

about the Joukowski airfoil in Figure 2. The comparison of truncation

error with error in the solution is indicated in Figure 3 for grid

points beginning near the trailing edge and ending near the leading

edge of the airfoil. The grid points were chosen to lie on the second

coordinate line from the airfoil surface so that no extrapolation was

needed to estimate the elements of E.

Each factor in the truncation error estimate can be analyzed

independently. The factor A-I deals only with the grid coordinates_

while g involves only the solution of the partial differential equation.

In the above example consideration of E alone would seriously under-

estimate the order of accuracy near the leading and trailing edge since

the distortion in the coordinate system would not be taken into account.

The influence of the factor A-I can be analyzed by examining the condi-

tion of the matrix A. An ill-conditioned matrix not only magnifies the

effect of the truncation terms in e but also the effect of deleting the

additional terms which appeared in the series expansions (2) and (3).

We will now consider a case where an extremely ill-conditioned

matrix is encountered. The Navier-Stokes equations in stream function-

vorticity formulation were solved numerically for viscous flow about a

circular cylinder. The data in Table 2 illustrates the growth in the

condition number of A as the circular coordinate lines are concentrated

near the cylinder to resolve the boundary layer. Only the Laplacian

of vorticity was included in the truncation error computation since

this truncation term clearly dominated the remaining truncation terms

in the equations. As n increases, the dominating factors in the trunca-
-i

tion term shifts from the elements of e to the elements of A An

examination of vorticity values revealed a clear deterioration of the

numerical solution for n = 4.



Table 2. Maximumtruncation error for V2mand
condition numberof A. Circular coordinate lines

r = 1 + 9(1 - exp(nn/48)) / (i - exp(n)),

n = O, i, ---, 48. Reynolds no. = 5.

n Max Truncation Max Cond I (A)

i .1079

2 .0482

3 .0891

4 3.0918

45

78

259

10].7

For later reference, we have from (2) for the one-dimensional case

that the simple two-point central difference expression for the first

derivative, f$/x , has a truncation error term given by

which acts as a numerical diffusion.

in Ref. I.

This effect was pointed out earlier

46
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III. COORDINATE SYST_! CONTROL

A. Original Generating System

In the formulation of boundary-fitted coordinate systems generated

from elliptic systems as given in Ref. 6 the curvilinear coordinates (_, n)

were determined as the solution of the system

2 (7a)
V _ = P($,_)

2 (Tb)
_7 n = Q(_,D)

which in the transformed plane becomes (from here on, subscripts indicate

derivatives)

=

_ = -J2(px$ + Qx n)_x_E 2Bx_ + Yxqr ]

(8a)

aysE - 2BYEn + _Ynn = _j2(pyE + Qyn)
(8b)

with
2 2

a _ x +Ynn

(9a)

S _ x¢x n + Y$Yn

(9b)
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2 2

y s xK + Y_ (9c)

J _ x_Y n - xnY _ (9d)

B. Attraction to Coordinate Lines

Here the functions P and Q are to be chosen to control the coordinate

line spacing. In Ref. 6 those control functions were taken as sums of

decaying exponentials of the form

n

p = i-__Elaisgn(6 - $i)exp(-ciI_ - _i[ )
(lOa)

m

-i__Elbisgn(_ - _i)exp(-di((_ - _i )2 + (rl - _i)2) I/2)

v

n

Q =i-__Elaisgn(_ - Ni)exp(-cil n - nil) (lOb)

m

E
i=lbisgn(n - ni)exp(-di((_ - _i )2 + (_ - hi)2) 1/2)

48

Here the ai, bi, ci, and d i of the Q functions are not necessarily the

same as those in the P function.

In the P function the effect of the amplitude a i is to attract K-



coordinate lines toward the Gi-line, while the effect of the amplitude
b. is to attract _-lines toward the single point (_i' _i )" Note that
i

this attraction to a point is actually attraction of G-lines to a point
on another _-line, and as suchacts normal to the _-line through the
point. There is no attraction of R-lines to this point via the P
function. In eachcase the range of the attraction effect is determined

by the decayfactors, c. anddi. With the inclusion of the sign changing1
function, the attraction occurson both sides of the t-line, or the

(_i' hi) point, as the casemaybe. Without this function, attraction
occurs only on the side toward increasing _, with repulsion occuring
on the other side.

A negative amplitude simply reverses all of the above-described
effects, i.e., attraction becomesrepulsion andvice versa. Theeffect
of the Q function on _-lines follows analagously. A numberof examples
of this type of coordinate line control havebeengiven in Ref. 6.

In the caseof a boundarythat is an _-line, positive amplitudes
in the Q function will cause_-lines off the boundaryto movecloser to
the boundary,assumingthat n increases off the boundary. Theeffect
of the P function will be to alter the angle at which the G-lines inter-
sect the boundary,since the points on the boundaryare fixed, with
the E-lines tending to lean in the direction of decreasing_. If the
boundaryis such that n decreasesoff the boundarythen the amplitudes
in the Q function must benegative to achieve attraction to the
boundary. In anycase, the amplitudesa. cause the effects to occur
all along the boundary,while the effects of the amplitudesbi occur
only near selected points on the boundary.

If the attraction line and/or the attraction points are in the
field, rather than on a boundary,then the attraction is not to a fixed
line or point in space, since the attraction line or points are them-
selves solutions of the systemof equations, the functions P andQ

being functions of the variables _ and _. It is, of course, also
possible to take these control functions as functions of x andy, instead
of Gand n, and achieveattraction to fixed lines and/or points in the
physical field. This casebecomessomewhatmorecomplicated, since it
mustbe ensuredthat coordinate lines are not attracted parallel to
themselves,and its discussion follows in a later section.

ORIGINAl, PACU, !q
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C. Control Functions for Certain Spacings_

For certain simple geometries it is possible to integrate (8)

analytically for appropriately selected forms of the control functions,

and thus to determine the control functions required to produce a certain

line spacing. In this regard consider the case of two concentric circu-

lar boundaries of radii r I and r2, with r2 > rl.

With _ = 1 on the inner boundary, q = J on the outer boundary, and

varying monotonically from 1 to I around these boundaries, a solution

of (8) can be given in the form

x r(q) cos [2_ $-i= (_)]
(lla)

y r(q) sin [2_ _-i= (yry)] (lib)

Substitution of these expressions into the equations of (8) with P((,q) = 0

yields

r-- _ r_i' ,2Q
r' r + r = 0 (12)

This can be made a perfect differential by taking the control function

Q to be of the form (following the direction of Ref. 7)

f"(N) 1

Q _ f,(_) r ,2

where the minus sign has been introduced merely for convenience Since
1

is equal to _ 2 for the solution given by (ii) this form of o suggests
j '

taking Q to be of the form

Q = _ i_ f"(n)
2 f'(_)

J

(13)
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Substitution of (13) into (12) yields

r" r" f"

r' r _-_--0
(14)

which can be integrated twice to yield

clf (n)

r(n) = c2e

The constants of integration may be evaluated from the boundary condi-

tions, r(1) = rI, r(J) = r2, so that

rf(n) - f(1)]

r(n) = rI {(r2/r I) [_(J) f(1)} (15)

This equation may then be solved for f(q) to yield

in[ r(_) ]
f(q) - f(1) =

f(J) - f(1) r

in [r-_]

(16)

If the distance from the body to the Nth R-line is specified to be

rN, the following equation must be satisfied:

r

in[-_l]
f(N) - f(1) (17)

f(J) - f(1) r2

in[rl]

It should be noted that the form of f(q) is still arbitrary, subject to

(17).

k.J
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Alternatively, to set r' at the inner boundary, n = i, we have,

upon differentiation of (15) with respect to n and subsequent evaluation

at n = i, that f(N) must satisfy

f' (i) rl

f (J) - f (i) -- r------_ (18)

in(_)

The two derivatives appearing in the truncation error of first

derivatives, as given in last equation in section II, are, from repeated

differentiation of (15),

r2

in (_1)
r I =

f(j) _ f(,) [rf'(n)] (19a)

r 2

in (771)
r" --

f(J) - f(1) [r'f'(n) + rf"(n) (19b)

Thus if a function f(n) with a free parameter is selected, (17)

may be used to determine the parameter in the function such that the

Nth n-line lies at a specified distance, rN - rl, from the inner

boundary. Alternatively, the free parameter may be determined by (18)

such that the spacing at the boundary is set by specification of r'

there. The derivatives in the truncation error terms may then be

calculated from (19). With the function f(n) determined, the control

function Q is then given by (13).

For example, with the function (Ref. 7)

f(n) _ nK n-I

V

52

where K is a free parameter, we have, by (17), that K must be the

solution of the nonlinear equation

NK N-1 - 1 In(r_ )

_ r 2

JK J-1 1 in (_i)

(20)



k_/ to set the Nth n-line at rN. Alternatively, the value of K required

to set r' to a specified value at the inner boundary is determined by

(18) as the solution of the nonlinear equation

i + inK

JK J-I - 1

r'(1)

r I (21)

For this function, the derivatives appearing in the truncation error

term, (19), are given by

f'(n) = (i + _InK)K n-I
(22a)

f"(n) = (2 + _InK)(inK) Kn-I
(22b)

The control function Q is given by (13) as

y 2 + nlnK.- (23)

Q = - 7(_ + _-l_nK)InK

It can be shown by consideration of the ratios of successive

derivatives that the higher derivatives of this function are progres-

sively decreasing if K is in the range

0 < inK < i(/__ I)
(24)

Since the left side of (21) is a decreasing function of K for positive

K, the smallest value of the spacing at the boundary, r'(1), that can

be achieved while maintaining progressively decreasing higher derivatives

of f(n) occurs with K at the upper limit of the inequality (24), viz

r' (1)mi n = rlln(_) I(i + _r_)
j exp[l(_- l)(J - i)] - i

(25)



It is not reasonableto use smaller values of r'(1) since the progressively
increasing higher derivatives of f(q) will result in significant trunca-
tion error introduced by the coordinate system.

Anotherchoice of f(n) might be

f(q) = sinh [K(q - i)] (26)

for which, from (17), the Nth line occurs at rN for K given by the
solution of the equation

sinh [K(N -l)______l] =
sinh [K(J - i)]

r

in (__NN)
rI

in (r_)

or the spacing at the inner boundary is r'(1) for K given by (18):

K

sinh [K(J - i)] = _

r'(1)

r1

In(r_)

(27)

The first two derivatives and the control function are given by

f'(q) = Kcosh[K(n - i)]
(28a)

f"(q) = K2sinh [K(q - i)]
(28b)

q = _ J6_ Ktanh [K(q I)]
j2 (29)

In this case progressively decreasing higher derivatives occur for K in

the range 0 < K < I, so that the smallest practical spacing at the

inner boundary is

54



r'(1)min =

rlln(_ I)

sinh (J - ])

The control function for the spacing distribution of Roberts,

Ref. 8, can be determined in the same manner as follows. With the

notation of Ref. 8 adjusted so that the boundaries occur as used

above, we have

r(n) = r 2 + G(,q) $ r 2

(30)

with

- J
b + r2 (7_-7-3)

G(n) = (__-7_)

with b a free parameter.

Although the form of f(_) could be extracted by substitution of (30)

into (16), it is simpler to determine the parameter b from either r(N) = rN,

or for a specified value of r'(1). The derivatives are

b+ r2 G
2 in( )

r'(n) = j - 1 _ (G + i)

r1

2 (l - _2)b

(31a)

r"(n) = 2(__ i)

b+r 2

In2 (V_r_r2)G__(I- _G)(i - _)b
(G + 1) 3

(31b)

The control function Q is then given by (13) and (14) as

=

y r" r '
Q = - -_(_-v r )

J

(32)
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with r, r', and r" to be substituted from (30) and (31).

Finally, another type of function is a patchedfunction using
different functions near andawayfrom the inner boundaryto achievea
groupof closely spacedlines near the inner boundarywith fairly
rapid expansionoutside this inner group. This is doneas follows:
Let the spacingof the inner group be such that the samechangein
velocity wouldoccur betweeneachtwo lines for a velocity distribution
given by u(r). To do this, invert the velocity function such that
r = r(u), and then take

u(n) = n - i
N _ 1 UN 1 _< n _< N

when u N is the velocity at the edge of the inner group of lines. Then

r(n) = r(u = _ - 1
N - f UN) 1 _ n _< N

From this function all the derivatives and the control function may be

calculated, the latter being determined by (13) and (14).

Now outside the inner group of lines, i.e., for N E n E J, let

r(r0 be a quartic polynomial:

1 IT i ] "I

r(q) = r'N( _ _ N) + _r N_n - N) 2 + _f N( n _ N)3

+ a(n - N) 4 + rN N < n -< J

where the three derivatives at n = N are determined from the derivatives

of the inner function, all being evaluated at rl = N. The final parameter,

a, is determined such that r(J) = r2. Thus

a (rj - rN) - r,N( J _ N) 1 ,, 2 1 ,, 3= - -_r N(J - N) - _r '(J - N)

4
(J - N)

The outer control function is then determined from (13) and (14). This

composite control function has only one continuous derivative, and thus

could possibly lead to truncation error introduced by the coordinate system.
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It is, of course, also possible to integrate the coordinate

equation (8) for the one-dimensional case. In that case the control

function Q is given by

_ ____ r" y f"(n)

Q = j2 r' = j2 f'(n)

(33)

and

f(n) - f(1)]
r(n) = r2 + (r2 - rl)[f(j) f(1)

(34)

jr

All the other steps follow in analogy with the two-dimensional case.

Now, although the two-dimensional case given above applies only to

concentric circular boundaries, the effect of using the same control

functions for the general case will be qualitatively the same, with even

closer spacing near inner boundary with stronger curvature. Thus the

control functions derived in the above manner can be expected to produce

the type of spacing desired in general applications. A version of the

TOMCAT code incorporating several of these functions has been written

and has been used to produce coordinate systems for airfoils with the

spacing at the airfoil set at 0.0___iiautomatically through (18). An

example is shown in Fig. 4, using the function above (20). Other exam-

ples are given in Ref. 9.

D. Revised Generatin_stem

The form of the control function Q taken in (13) naturally leads

to the idea of replacing the original elliptic system, (7), with the

system

V2_ = (_x 2 + $y2) p (_,n) (35a)

2 2)
V2n = (nx + ny Q (_,n) (35b)
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since the terms multiplying P and Q here are, respectively, equal to _--

and X_ With this system the transformed equations are j2
j2 "

axgg - 2Bx_n + TXnn = - (aPxg + yQxn) (36a)

aY_g - 2BY{n + YYnn = - (aPYg + YQYn ) (36b)

This form has also been given by Shanks and Thompson, Ref. i0, and by

Thomas and Middlecoff, Ref. Ii. This form has now been adopted in the

latest version of the TOMCAT code.

The exponential forms of the functions P and Q, and the discussion

given therewith above, are still applicable with this system. Appropriate

values of the attraction amplitudes are several orders of magnitude smaller

with this new system because of the relatively large values attained by

the terms multiplying P and Q for small Jacobians.

Finally, it is useful to solve (36) simultaneously to display P and

Q explicitly as

1

P = - _--_(y_Dx - xnDy ) (37a)

1

Q = _-_ (y nx - x Dy)g (37b)

with

Dx _ axgg 2Bxgn +- yxn_

Dy z ay_ - 25y_ + YYn_

(38a)

(38b)
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With (37) the control functions required to produce any specified

solution x(_,_), Y(g,n) could be calculated. Although such a procedure

is normally of only academic interest, since the solution x(_,n), Y($,n)

is yet to be determined, it might be useful in some cases to determine



P andQfrom (37) for someapproximatesolution generated, say, by
simple interpolation from the boundaries, andthen to use smoothed
values of these functions as the control functions for the actual
solution. Although the approximatesolution might havelacked continu-
ity of derivatives, the actual solution determinedby solving the
elliptic systemwith the smoothedcontrol functions will have continuous
derivatives, while following generally the form of the approximate
solution.
E. Control Functions for Near Orthogonality at Boundar__

Another example of the usefulness of (37) is as follows. The

solution for the concentric circle case can be generalized slightly to

include variable spacing of points along the boundaries by taking,

instead of (ii),

x : r(rj)cos [2_ g(_-!_--_(1)]
g(1) - g(i)

(39a)

_J

y = r(_) sin [27 $(_) - _](I_
g(I) g( )

(39b)

Substitution of these functions in (37) then results in

p = _ g" (40a)
g'

r' r" (40b)
Q= ,

r r

The second of these is the same as (13), using (14) and considering the

above re-definition of Q, and was used above to generate the control

function Q.

With g(q) determined by the boundary point spacing, the control

function P given here will maintain the S-lines as radial lines, i.e.,
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normal to the circular boundaries.

circular boundary is given by

Note that arc length along the

s(O = 2_ g(O - g(1)
g(1) g(1) r (41)

so that the function g(_) may be related to arc length by

g(O = g(1) +_)
2_r - s(_) (42)

Thus (40a) can be rewritten in terms of arc length as

S lyp -
s' (43)

As discussed above for the control function Q, this idea can be

carried over to the case of general boundaries to produce the same effect

qualitatively. Thus in the general case, the control function P could

be determined at each boundary from (43), and then values of P in the

field could be taken from linear interpolation between the values at

corresponding boundary points.

F. Attraction to Fixed Lines in Physical Space

As mentioned above, the attraction of coordinate lines to fixed lines

and/or points in physical space, rather than to floating coordinate lines

and/or points, requires further consideration. Recall that in the above

discussion, n-lines are attracted to other H-lines, and _-lines are

attracted to other _-lines. It is unreasonable, of course, to attempt to

attract R-lines to _-lines, since that would have the effect of collapsing

the coordinate system:

_-line

n-line
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When, however, the attraction is to be to certain fixed lines in

x-y space, defined by curves y = f(x), care must be exercised to avoid

attempting to attract n or $ lines to specified curves that cut the n

or _ lines at large angles. Thus, in the figure below:

. _-line

\
-- .- y = f(x)

\

it is unreasonable to attract _ lines to the curve f(x), while it is

natural to attract the n-lines to f(x).

However in the general situation, the specified line f(x) will not

necessarily be aligned with either a _ or n line along its entire length.

Since it is unreasonable to attract a line parallel to itself, some

provision is necessary to decrease the attraction to zero as the angle

between the coordinate line and the given line f(x) goes to zero. This

can be accomplished by multiplying the attraction function by the cosine

of the angle between the coordinate line and the line f(x). It is also

necessary to change the sign on the attraction function on either side

of the line f(x). This can be done by multiplying by the sine of the

angle between the line f(x) and the vector to the point on coordinate

line.

These two purposes can be accomplished as follows. Let a general

point (x, y) be located by the vector R(x, y), and let the attraction

line y = f(x) be specified by the collection of points S(x i, Yi ),

i = i, 2, --, n. Let the unit tangent to the attraction line be

t(xi, yi) , and the unit tangent to a G-line be _(_). Then the sine

and cosine of the angle between the _-line and the attraction line may

be written as

sine =

6]



cosine = t i . !i (_)

wherek is the unit vector normal to the two dimensionalplane. These
relations are evident from the figure

"-_ -- R-S i
"__I_ _(_)

Y _

X

_-line

attraction line

The control function P(x, y) may then be logically taken as

P(x,y) = -_ ai(ti . Ti(_)) [_ix ($ - _i) 3 " _
i=l i_-_--T-_-_xp(-diI_- +il) (44a)

with the analagous form for Q:

n [t ix (R - Si) ] • k

Q(x,y) = -z ai( t _ (q)) + ~ _ 7exp(-diIR - Sii) (44b)i=l i +i --_+_sil

These functions depend on x and y through both R and _(_) or T (n) and

thus must be recalculated at each point as the iterative solution of (36)

proceeds. This form of coordinate control will therefore be more expres-

s'ive than that based on attraction to other coordinate lines.
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There is no real distinction between "line" and "point" attraction

with this type of attraction. "Line" attraction here is simply attraction

to a group of points that form a line f(x). If line attraction is speci-

fied, then the tangent to the line f(x) is computed from the adjacent

points on the line. If point attraction is specified, then the "tangent"

must be input for each point.

The tangents to the coordinate lines are computed from

T(_)= --](ixn + JY_)
(45a)

T(n) = l(jx_ + jy_) (45b)

G. Point Distribution on Boundary Accordin$ to Curvature

One final technique to mention concerns the placement of points

along the boundary according to the local boundary curvature. Let a

boundary curve be describedby the function y = f(x). Then if s is arc

length along the boundary we have

ds _ '71 f ,2dx +

Now take the rate of change of arc length with the curvilinear

coordinate, C, along the boundary to be exponentially dependent on the

local radius of curvature, r, of the boundary. Thus let

ds _ 1 - e -br
d_

where b is a free parameter. This function causes the arc length to

change slowly with _ where the curvature is large.

Eli..... :
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Then

d_ ds/ds /ii + f,2
d'-_= _-_x_ =

-br
1 - e

Since f and r are known at each x, a normalized _(x) may be determined

from

X

I _/1 + f,2
0 1 - e -br dx'

_(x) = 1 + I (46)

l__l + f,2

0 1 -e _r dx'

assuming x is normalized to vary from 0 to 1 and _ to vary from 1 to I.

The quadrature may be taken numerically if necessary.

Then for I number of _-points $ = i, 2, --, I on the boundary, the

corresponding values of x can be determined by inversion of ¢(x), done

by interpolation of tabular values if necessary. The arc length between

each of these points can then be calculated and the value of the free

parameter b can be adjusted iteratively to produce, say, a specified

maximum arc spacing along the boundary, or perhaps, to match a specified

arc spacing at either end or, for that matter, at any given point. In

application to airfoils, this procedure is applied to the upper surface

with b chosen to match a specified maximum arc spacing. A separate

application is then made to the lower surface with b there being chosen

to match the arc spacing adjacent to the leading edge on the upper

surface.

This procedure produces a smooth point distribution on the boundary,

with points concentrated in regions of large curvature, yet free of the

rapid spacing changes that lead to coordinate-system-introduced trunca-

tion error of the type discussed in an earlier section.
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IV. SOME RECENT APPLICATIONS OF COORDINATE SYSTEMS

In addition to extensive application to airfoils, as illustrated

in Fig. 4, in which the transformed plane is an empty rectangle, some

more general configurations have recently been treated using a trans-

formed plane that contains rectangular "voids as discussed in Ref. 12.

For example, a coordinate system used in a simulation of a nuclear

reactor cooling system is shown in Fig. 5, taken from Ref. 13, and

systems for Charleston harbor (Ref. 14) and a portion of Lake

Ponchatrain are shown in Figs. 6 and 7.

V. CONCLUSION

Control of the spacing of coordinate lines so as to resolve large

gradients in numerical solution of partial differential equations

continues to be of paramount importance. Research has provided some

means of control and of error estimation. The experience gained thus

far has indicated the versatility of the coordinate systems generated

from elliptic systems and the possibility of optimization of such

systems in adaptation to the nature of particular partial differential

systems and boundary configuration.
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MESH GENERATION USING ALGEBRAIC TECHNIQUES
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Coordinate transformations are powerful tools for the solution of the

partial differential equations which describe physical phenomena. The

use of transformations leads to well ordered discretizations of the

physical domain and thereby renders a simplification in a numerical solution

process. The discretization is constrained by the underlying physics, the

problem geometry and the topology of the region where the solution is to

be obtained. The constraints can be stated in geometric terms. In

particular they can be categorized as boundary constraints, uniformity

constraints, and internal constraints. Boundary constraints include: the

basic geometry of solid objects, the transmissive junctures between and

around solid objects, the choice of representation for the boundaries, the

angles at which transverse coordinate curves intersect boundaries, and the

rate of entry for such coordinate curves. Uniformity constraints are

applied to either local or global distributions of coordinate curves or

points to form a basis from which the curves or points can be redistributed.
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This may be based on an a priori specification of a distribution function

or on a solution adaptive approach. In either case, the redistribution

must not be distorted by the underlying transformation. Internal con-

straints are applicable when an interior shape or interior meshstructure

is to be smoothly embeddedwithin a global mesh to simplify the simulation

of physical processes in the given region.

Algebraic meshgeneration techniques are highly advantageous for

meeting the constraints described above. Algebraic techniques provide

exact control of the meshproperties necessary to satisfy the given

constraints. Although other methods have been developed which provide some

degree of control, the level of control is not in general sufficient to

satisfy certain of the constraints. For example, the smooth embeddingof

a Cartesian meshwithin a global meshstructure cannot be readily con-

structed with the application of differential equation techniques. Also,

three dimensional meshesare not in general readily obtained with non-

algebraic techniques. On the other hand, algebraic techniques require

more complex specification of the data to assemble a mesh. The purpose

of this paper is to present an overview of algebraic techniques for mesh

generation and set forth the underlying concepts which have been successful.

Both two- and three-dimensional domains are considered.

V

The Multi-Surface Transformation

When curvilinear coordinates are employed in the numerical solution

of a boundary value problem, constraints must often be placed upon the

coordinates, in addition to the basic requirement that the bounding sur-

faces are coordinate surfaces of one or more coordinate systems. The
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locations of the constraints can occur anywhere in the problem domain.

On the boundaries, a particular pointwise distribution may be needed; in

regions near boundaries, a particular coordinate form maybe advantageous;

and away from the boundaries, an internal coordinate specification may

also be required. Typically, the constraints will arise either to resolve

regions with large solution gradients or to cause somesimplification in

the problem formulation and solution.

In conjunction with the demandfor constraints, the general multi-

surface transformation [I] will be examined. The multi-surface transfor-

mation is a method for coordinate generation between an inner bounding

surface _I and outer bounding surface _N" To establish a particular

distribution of meshpoints on each bounding surface, a commonparameteriza-

tion _ is chosen for each surface. This is equivalent to a coordinate

description of the surfaces which yields the desired surface meshwhen the

parametric componentsof _ are given a uniform discretization. With the

parametric description, the inner and outer bounding surfaces are denoted

by _i(_) and _N(_) respectively. In continuation, parameterized

intermediate surfaces _2(_),...,_N_I(_) are introduced so that they

can be used as controls over the internal form of the coordinates. The

intermediate surfaces are not coordinate surfaces but, instead, are

surfaces which are used to establish a vector field that is composed of

tangent vectors to the coordinate curves spanning the coordinate system

to connect bounding surfaces. It is also assumed that the collection

of surfaces _i(_), _2(_),...,_N(_) is ordered from bounding surface

to bounding surface. An illustration is given in Fig. I. For a fixed
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Fig. 1 - A piecewise linear curve and its tangent field.

parameter value _, there is a corresponding point on each surface. The

piecewise linear curve obtained by connecting corresponding points is

given by the dashed curve in Fig. I. From the figure, it can be observed

that the tangent directions determined by the piecewise linear curve are

piecewise constants. As _ is varied, the field of tangent directions

76



obtain their smoothness (level of differentiability) only in _. To obtain

smoothnessin going from bounding surface to bounding surface, a suffi-

ciently smooth interpolation must be performed. The result is a smooth

vector field of undetermined magnitude which gives the desired tangential

directions for coordinate curves connecting the bounding surfaces. A

unique vector field of tangents is then obtained by correctly choosing

magnitudes so that, on integration, the bounding surfaces are fit precisely.

In symbols, a vector field tangent to the piecewise linear curves is

given by

Vk( ) : Ak[]_k+l(1) - Fk(1)] ,
(i)

between the kth and (k + l)th surfaces where k is taken to vary (if

N > 2) from the first bounding surface to the final intermediate surface.

These vectors are indicated in Fig. I. The coefficients Ak are scalars

which determine the magnitude of the vectors but not the directions. When

an independent variable r is assumed for the spanning direction, a

partition r I < ... < rN_ 1 can be specified in correspondence with the

tangents of Eq. I. The partitioned variable can then be used to represent

the tangents as the discrete vector valued function which maps r k into

_k for k = 1 ... N-I. A sufficiently smooth vector field _(r,_) is

then obtained by a sufficiently smooth interpolation _(rk,_) = _k(_) -

With r as a continuous independent variable, the r-derivative of the

coordinate transformation _(r,_) is equal to the interpolant and is

gi ven by
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_ _ N-I
--: = "? _k(r) (_)Dr k=l _k (2)

where @k(rj) is unity at k = j and vanishes otherwise. When Eq. 2

is integrated with an initial r I value of _i(_), the transformation

becomes

-#(r,i): FI( )+
N-l

7
k=l

AkGk(r)[_k+l(_ ) - _k(_)] , (3)

where

r

Gk(r ) : f _k(X)dx ,
r I

(4)

from which we observe that the interpolants @k must be continuoL, sl,,

differentiable up to an order which is one less than the level of smoothness

desired for the coordinates. The construction of local controls on the

coordinates will rely upon the development of suitably smooth interpolation

functions. If the magnitudes Ak of Eq. 1 are chosen so that each

AkGk(rN. l) is unity, then the evaluation of the transformation at rN_ 1

will reduce to _N(t) by means of a telescopic collapse of terms in

Eq. 3. With this choice, we obtain the general multisurface transformation

of Eiseman [I] which is given by

:  i(I) +
N-I Gk(r )

7. GN( [_k+l (_) - _k(_)] (5)k=l rN-l)
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On examination, each interpolation function _k can be rescaled without

changing the transformation; hence, the original vector field interpolation

becomesan interpolation only on vector directions.

Whenthe interpolants _Jk are polynomials in r, the coordinate

curves which connect the bounding surfaces are globally defined by poly-

nomials in r of one greater degree. The specification of boundary

properties for the curves and a global control over their general form are

obtained by choices of intermediate surfaces and the associated partitions

of r. For notational simplicity, let r I = 0 and rN_1 = I. In the

simplest case when there are no intermediate control surfaces, there is

just one vector field direction _i(_) which is determined solely by

the bounding surfaces. The interpolant _I is then a constant function,

Gl(r ) = r_Jl, GI(r)/GI(1) = r, and the polynomial 2-surface transformation

becomes

_(r,_) = -_l(_) + r[_2(_) - _i(I)] , (6)

which is the case of linear coordinate curves connecting boundaries. The

linear case has occurred in many studies including [2], [3], and [4] and

is limited to at most one prescribed coordinate property per boundary

which can be either a pointwise distribution or a distribution of angles

with the linear transverse coordinate curves. To allow for the prescrip-

tion of an additional coordinate property on one of the boundaries, an

intermediate control surface is introduced and the polynomial 3-surface
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transformation is computedfrom Eq. 3 with @I : 1 - r and _2 = r

corresponding to directions of _i(_) and _2(_) of Eq. 1 and Fig. I.

The integrals from Eq. 4 become

2
r

Gl(r) = r - _--

2
_ r

G2(r) 2

(7)

and since G](1) = G2(I ) = _, the original vector field which is discrete

in r is determined by

_i(_) = 2[i_2(_ ) - _i(_)],

_2(_) = 2[_3(_ ) - _2(_)],

(8)

because Ak = l./Gk(1) in Eq. I. Upon substitution from Eq. 7 the

polynomial 3-surface transformation is given by

F(r,_) = _i(_) + r(2 - r)[_;2(_ ) - _i(_)]

+ r2[_3(_ ) - _;2(_)].

(9)

In continuation, an additional coordinate property can be prescribed

on each boundary when two intermediate control surfaces are used. The

polynomial 4-surface transformation is computed from Eq. 3 with interpolants
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_l(r) = (I - r)(r 2 - r),

_2(r) = r(l - r),
(lO)

_3(r) = (r - r2)r,

which respectively correspond to the directions of _i(_), _2(_), and

_3(_) which, in turn, are respectively associated with partition points

r I = O, r 2, and r 3 = 1 and which are defined to vanish at all partition

points except the ones of association for each function. For simplicity,

1
we will set r 2 = _ so that the partition is uniform. The nonuniform

case is a simple but algebraically more complex extension [I]. With

1
r 2 = _, the integrals from Eq. 4 become

=I 3r2Gl(r) _ r - _ + ½ r 3,

G2(r) = ½ r 2 _ r 3, (II)

1
and from an evaluation at the endpoint r = 1 we have GI(1) = _-,

G2(I ) = , and G3(1) = _. By substitution, the polynomial 4-surface

transformation is given by
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which explicitly shows that in addition to fitting the boundaries (Eq. 14),

the intermediate surfaces _2(t) and _3(_) can be used to control the

angles at which the transverse coordinate curves in r intersect the

boundaries (Eq. 15). Moreover, the choice of intermediate surfaces can

also be used to control the shape of the transverse curves and the distribu-

tion of the constant r coordinate surfaces. The general derivation and

discussion is given in Eiseman [I]. For our purposes, the discussion on

coordinate system controls will be deferred until local methods are pre-

sented for our survey of some of the material developed in Eiseman [5],

[6].

An alternative form of the polynomial 4-surface transformation (Eq. 12)

can be obtained from the evaluations of the transformation (Eq. 14) and its

derivatives (Eq. 15). With the evaluations, the intermediate surfaces

can be expressed entirely in terms of boundary data, which results in

and

(16)

1
: -

Upon substitution of Eqs. 14 and 16 into Eq. 12 we obtain

F

F(r,_) = (I - 3r 2 + 2r3)F(o, _) + r2( 3 - 2r)F(l,_)

+ r(l - r) 2 _F _F (I,_),(0,_) - r2(l - r)

(17)
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after grouping terms by boundary type. By examination, the coefficients

of the boundary evaluations for the transformation and its r-derivative

can easily be identified as just the canonical Hermite cubic interpolants

on the unit interval 0 <_r <_I. Whenthe r-derivatives are specified

to be normal to the respective boundaries, we obtain the transformation

presented by Smith and Weigel [3].

In continuation, polynomial N-surface transformations can be

systematically established from Eqs. 3-4 and the interpolants

N-I
_k(r) = _ (r- ri) , (18)i=l

i_k

for k = 1,2,...,N-I. In each case, the transverse coordinate curves are

polynomials of degree N-I in r with vector valued coefficients which are

functions of the surface coordinates _. Polynomials, however, are globally

defined for all r, and as a consequence, local meshproperties cannot be

controlled without a global effect. As an example, suppose that we wish

to smoothly embeda general rectilinear Cartesian system within a global

meshstructure to obtain a system of the form illustrated in Fig. 2 where

the Cartesian region within the meshis boundedby the darkened curves.

In the Cartesian part of the mesh, coordinate curves in r would be lines

which pass through it at a uniform rate. Since global polynomials in r

would be uniqueiy determined by the Cartesian region, curved boundaries

could not be fitted.
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Fig. 2 - A smoothly embeddedCartesian region

within a global mesh structure.

To obtain precise local controls which could be successfully applied

to generate a mesh as illustrated above in Fig. 2, local forms of the

multisurface transformation (Eqs.3-4) were established and analyzed by

Eiseman [5], [6], and [7]. Our discussion will follow the development

given by Eiseman in [6] and will focus upon two-dimensional applications

with a surface coordinate _ = t. When the interpolants _k are

nonvanishing on only a local region, the precise local controls over the

coordinates that were obtained will be illustrated with the local piecewise

linear interpolants that are depicted in Fig. 3. For algebraic simplicity,

the analysis is restricted to the case with the uniform partition r k = k

with the clear understanding that nonuniform partitions will follow the

same analytic pattern. Since the multi-surface transformation remains

unchanged when the interpolants are scaled by any sequence of nonzero
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L
i 2 3 k-1 k k+l

N-2 N-1

Fig. 3 - Piecewise linear local interpolants with partition points
r k = k for k = 1,2, .... N-I.

numbers, the height _k(rk) of each interpolant can be chosen arbitrarily.

In particular, the form of the multi-surface transformation can be

simplified when the heights are adjusted so that each interpolant integrates

to unity which yields Gk(rN_ I) = I for all k. The integrals are

obtained from triangular areas, and by direct observation, lead to the

height adjustments _](rl) = 2, _k(rk) = I, and _N_I(rN_I) = 2 in

correspondence with the successive illustrations in Fig. 3. Also, in

correspondence, the explicit form of the normalized interpolants are

given by

86

@l(r) : 12(2 - r)
0

for I <r<2

for 2 < r < N -

(19)



_D

CD

rD

"1"1
.J.

I

II

I

Z O

+

-"H --_
O O
-._ .-_

, I A

IA A

IA

I

II

I
I

r"o

4- o
i

i
i

+
+

--h -h --h --h
O O O O

+ IA , IA

IA A IA A

[A 4" A I

I

I_0

II

I

PO

I

--h -I"i
O O

IA IA

i A A

I

Do

rD
.._°

I'D

_D

11)
O.

m

c_

Z

i

v

II

I

-7 O

+

DO

--h --h
O O

_. .._

, I A

IA A

IA

I

_o

r_

II

I I

÷ 4-

--h "-h --h -4-,
O O O O

_- _- _

+ IA ' IA

IA A IA A

IA + A I

I

0



f
I
I

I

i

II
f

i
I

Gk /_--"

/ i
/I;-

_/ f2 i

2 k-1 k k+l

G
N-I

i I

N-2 N-I
_r

Fig. 4 - Integrals of normalized interpolants for the partition r k = k.

On the interval k _ r < k + I, the integrals Gi(r ) which correspond

to interpolants defined over nonintersectinq intervals are either unity or

vanishing depending upon whether the interval of definition precedes or

follows the interval under examination. When i = 1,2,...,k - l which

is nonvacuous for k > l, the integrals Gi(r ) have been evaluated over

the entire domain for which the respective interpolant _i is nonvanishing;

hence, these preceding integrals are unity by the chosen normalization.

When i = k + 2, k + 3,...,N - l, the interpolants _i each vanish on

I _ r < k + I; hence, the integrals Gi also vanish there. As a

consequence, Gi for i = k, k + l yield the only nontrivial contribu-

tions for the multi-surface transformation which reduces to

_(r,t) : _l(t) +
k-I

i=l [_i+l(t) - _i(t)] + Gk(r)E_k+l(t ) - _k(t)]

88

+ Gk+l(r)[_k+2(t) - _k+l(t)] + 0 (25)

: ffk(t) + Gk(r)Effk+l(t ) - _k(t)] + Gk+l(r)E_k+2(t ) - _k+l(t)],



which depends upon only the three control surfaces _k' _k+l' _k+2

which can be arbitrarily selected to our advantage when they are not

bounding surfaces. With substitutions from Eqs. 22-24, we obtain the

partition point (r k = k for k = 1,2,...,N - I) evaluations

i_(l,t) = _l(t),

_(2,t) : ½ [_2(t) + _3(t)],

_(k,t) : ½ [_k(t) + _k+l(t)],
(26)

_(k+l,t) : ½ [_;k+l(t) + _k+2(t)],

_(N-2,t) : ½ [_N_2(t) + _N_l(t)],

F(N-l,t) = _N(t),

which, in addition to boundary fitting at the end points r = 1 and

r = N - I, also shows that the transformation passes through the midpoints

of the lines which connect the intermediate control surfaces for any

fixed surface coordinate t. Moreover, from the general multi-surface

construction (Eqs. I-5 and Fig. I), the transverse coordinate curves are

tangent to the connecting lines at the partition point evaluations. The

tangents at partition points can be explicitly obtained from substitutions
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of the interpolation functions (Eqs. 19-21) into the r-derivative of

the transformation (Eq. 25) and are given by

V

_-F(l,t) : 2[_2(t ) - _l(t)],

_)--f(2,t) = _3(t) - _2(t),

_ (k t) (t) _k(t),TF ' = gk+l -

_--f (k+l,t) : _k+2(t) - _k+l(t),

(27)

_ (N-2,t) (t) _N 2(t)_--_ : _N-I - - '

V

3--f_(N-l,t)= 2[FN(t ) - _N-I (t)].

In graphical form, this process is depicted in Fig. 5.
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m

F (t)
k+l

_(k,t)

_k (t) +2

N

Fig. 5 - Coordinate curve segments for k _ r < k+l.

Between the control surfaces _i and _j for i > j, the distribution

of constant r coordinate surfaces can be controlled for the general

multisurface transformation (Eqs. 4-5) when uniformity can be specified

along a direction of measurement

_i(_) - _j(_)
:

llT i( )  j( )II

for then arbitrary distributions can be applied relative to uniform

conditions. An illustration is given in Fig. 6.

(28)

F
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P
i

P(t)
1

(t)
J

Fig. 6 - Measurement of uniformity.

To obtain uniformity, the projected arc length

Sp(r,_) : [_(r,_) - _j(_)] • _(_), (29)

depicted in Fig. 6 must be linear in r, or equivalently _Sp/_r must be

independent of r. But then from Eq. 25 and with the relative projections

Cm(t) = [_;m+l(t) - #m(t)] • T(t), we have

_S

Dr : _k(r)Ck (t) + _k+l(r)Ck+l(t)
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-2Cl(t) + C2(t)

-Ck(t ) + Ck+l(t)

-CN_2(t) + 2CN_l(t)

for k = 1 ii
for l<k<N-

for k N - 1

r + function of t, (30)

"v

where the last equality comes from Eqs. 19-21. Hence, for k = j, j+l,..., i-l,

uniformity is obtained if 2Cl(t) = C2(t) should k = I, Ck(t) = Ck+l (t)

should 1 < k < N - I, and CN_2(t) = 2CN_I (t) should k = N - I. A more

thorough discussion on uniformity is available in Eiseman [I] for the

global case, in Eiseman [5], [6] for the local case, and in Eiseman [7]

for the general cases.

To explicitly demonstrate the application of the local controls, and

at the same time, reveal the basic algorithmic steps, coordinates will

be obtained for a simple transition from a purely Cartesian system into a

purely Polar system. For 0 £ t _ I, the Cartesian coordinates will be

specified below a line _(t) = (2t-l,O) and the Polar coordinates, beyond a

circular arc /2T Q(t) where -G(t) = (-cos o, sin e) for o = (2t + I)_/4.

The line and the arc are depicted in Fig. 7.
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Y V

(1,1)

Fig. 7 - Basic curves for the Cartesian to Polar transition example.

To obtain uniformity near the sides (t = 0,1) of the transitional region,

the unit vertical distance will be used as a basis for displacements to

establish uniformity below the line and beyond the circular arc. For the

line, let

_](t) : _(t) - (o,5),

P2(t) = Q(t) - (0,2),

]_3(t) = _(t) - (O,l),

--).

P4(t) = Q(t),

(31)
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_7(t) : + vJ2) u(t),

be the last three surfaces so that for

we have

_(t) : _7(t) - _5(t) : u(t)

II_7(t ) - _5(t) II
(37)

c5(t) = [_;6(t) - _5(t)] • T(t) = u(t) • u(t) = l,

and
(38)

[_7 ( 6 ( ^ ½ ^C6(t) = t) - _ t)] • _(t) : u(t) • u(t) = !
2'

which satisfies uniformity for

the circular arc

5<r<6 and yields a Polar system from

_(5,t) : 1 [_5(t) + _6(t)] = (21_-+ v_-) u(t), (39)

up to the circular arc

_(6,t) = _7(t) = (_+ _) u(t). (4O)

The entire collection of bounding and intermediate surfaces are depicted

in Fig. 8.
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Table 1

MESH
r k Gk Gk+1INDEX

1 1.00 1 .00 .00
2 1.25 1 .44 .03
3 1.50 1 .75 .13
4 1.75 1 .94 .28
5 2.00 2 .50 .00
6 2.25 2 .72 .03
7 2.50 2 .88 .13
8 2.75 2 .97 .28
9 3.00 3 .50 .00

I0 3.25 3 .72 .03

MESH
INDEX

II 3.50 3
12 3.75 3
13 4.00 4
14 4.25 4
15 4.50 4
16 4.75 4
17 5.0O 5
18 5.25 5
19 5.5O 5
20 5.75 5
21 6.00 5

Gk

88
97
5O
72
88
97
5O
72

•88
.97

1.00

Gk+l

.13

.28
.00
.03
.13
.28
.00
.06
.25
.56

1.00

\

Fig. 8- Control surfaces for
polar-rectangular mesh.

Z

i iI

--- 1

I _4_-

Fig. 9 - Polar-rectangular mesh.

For 21 equally spaced mesh points in r, the evaluation of the

r-dependent functions is given with two decimal places of accuracy
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in the table. For a given mesh point, the interval k < r < k + l

containing it determines the index k for Gk and Gk+ 1 respectively

in Eqs. 22-24. Due to the uniform selection of partition points r k, a

repetitive pattern in the Gk evaluations can be observed and is

indicative of translated versions of the same function. When 9 uniformly

spaced mesh points are chosen for 0 _ t_ I, and when the multi-surface

transformation of Eq. 9 is evaluated for the 21 × 9 mesh, we obtain the

coordinate mesh which is displayed in Fig. 9. From uniformity and

Table I, the first 8 and the last 5 mesh points in r are seen to be

uniformly distributed, and the mesh is respectively purely Cartesian and

purely Polar for those points. To illustrate the computational aspect,

we shall explicitly evaluate the transformation at the point with curvi-

linear variables r = 4.5, t = O. At t = O, we have

and

_(0) = (2(0)-I,0) = (-I,0),

: (-cos 7, sin = (- 1 I)
i

12

(41)

For r = 4.5, we are at the 15th mesh index in Table 1 where we read

across to note that we are in the 4th interval (4 S 4.5 S 5) with

G4(4.5) = .88 and G5(4.5) = .13. By substitution into the transformation

(Eq. 25 for k = 4) we obtain
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-_(4.5,0) : _4(0) + G4(4.5)[_5 (0) - _4(0)] + G5(4"5)[-_6(0) - _5(0)]

= _(0) + G4(4.5)[d2 u(O) - _(0)] + G5(4.5) u(O)

: (-1,o) + I, _I)_ (-I,0)] + .13(- I, _II)
,/2 ,/2 /2 v'2

: (-I,0) + .88(0,1) + (-.09,09)
(42)

= (-I + 0 -.09, 0 + .88 + .09)

: (-I.09, .97).

In continuation with local methods, the case with nonuniform parti-

tions for the piecewise linear functions is given in Eiseman [5]. In

addition, local interpolants with a higher level of smoothness (derivative

continuity) can be used and are developed in Eiseman [7]. With the local

controls over the transverse coordinate curves which connect two bounding

surfaces, lateral bounding surfaces can also be approximately fit. A

precise fit of the lateral boundaries can be obtained with blending

functions which were used by Gordon and Hall [8] to create a global method.

Further applications of blending functions will be presented at this work-

shop by Ericksson [9], by Forsey, Edwards, and Carr [I0] and by Anderson and

Spradley ill].
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Algebraic Mesh Generation - Three Dimensions

An algebraic approach to mesh generation in three dimensions results

in algebraic functions that relate a computational domain to a physical

domain. If the computational domain is defined by the three variables r,

_, and _ on the unit cube

O<r<l

OSCSI,
(43)

0<_<I,

then the physical domain in Cartesian (x,y,z) coordinates is given by the

transformation _(r,E,¢) = (x,y,z) where

x : x(r,_,_) ,

y : y(r,E_,_) ,
(44)

z : z(r,_,_).

When Eq. 44 is nonsingular it has an inverse transformation denoted by

I00



r = r(x,y,z) ,

C = _(x,y,z) ,
(45)

= C(x,y,z)

v

A uniform mesh is defined on the computational domain by constants Ar,

At, AC (Fig. I0). This mesh maps using Eq. 44 to a corresponding mesh

q

Fig. I0- Computational domain.

in the physical domain which is not necessarily uniform.

for Eq. 44 is given by

A simple example



kl_

x= - 1) XL'
e - 1

k2r

+YL (e -Y = _XL{tan Oy k2 I_)},
e - I

k3c

z = _XL{tan Oz + ZL (e - 1
k3 )},

e - I

(46)

or

1 _n{1 + (e kl
- kl - I)x__},

XL

= 1 k 2

r _ _n{1 + (e - 1)(xY-- tan Oy)1__},
YL (47)

1_ k3

= k3 Ln{l + (e - 1)(_- tan Oz) I},
ZL

where kl, k2 ' k3 ' Oy, Oz, XL ' YL' and ZL are constants. For

_0 _ _ _ I, 0 _ r _ I, 0 _ _ _ 1 and YL = ZL the uniform computational

domain maps into a frustrum of a paramid (Fig. ll) and the mesh is

concentrated in the physical domain according to the magnitudes and

signs of kl, k2, and k3.

Equation 44 must satisfy the constraints outlined in the

introduction and which vary from problem to problem. For many mesh

generation problems, the constraints reduce to having the boundaries

in the computational domain map to boundaries in the physical

V

I02



Fig. 11 - Physical domain for Eqs. 46-47.

domain and concentrating the mesh in specified regions of the physical

domain. The polynomial N-surface transformations (Eq. 6-18) are global

algebraic mesh generation techniques which satisfy the basic boundary

constrafnts and result in polynomial functions of degree (N - I)

with respect to one of the independent variables. For a small N the

polynomials are particularly simple. If the surface coordinates are

I = (_,_), the transformation _(r,_) = (x(r,1), y(r,_), z(r,_))
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1 ;

i'

i YBI' ZBI

--Z

Fig. 12 - Boundary mapping.

is defined such that

XBI : x(O,_,C) : XI(_,_) ,

YBI : y(O,_,_) = YI(_,_) ,

ZB] = z(O,_,_) = Z](_,c) ,

XB2 = x(l,_,_) = X2(C,_) ,

YB2 = y(I,C,C) = Y2(C,_) ,

ZB2 = z(l,_,C) = Z2(_,C) ,

(48)
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where _i(_,_) = (XBI, YBI, ZBI) is one boundary and _N(_,_) =

(XB2, YB2, ZB2 ) is the other boundary in the physical domain (Fig. 12).

The polynomial 4-surface transformation (Eq. 12 and 17) allows a

constraint to be placed on the mesh in addition to that of fitting the

boundaries. This constraint occurs when the physical mesh is required

_X
to be orthogonal at the boundaries. Since the derivatives _ (0,_,_),

_X (I,_ _) etc. can be computed from the cross product of the tangential
Dr ' '

dX 1 dX 1 dY1 dY 1
derivatives d-_ (_'_)' d-_ (_'_)' d_ (_'_)' d-_- (_'_)' etc., we have

__ _Z (_-I,_,_) F =_X (z-l,_,C) T + _Y (z-l,_ _) ] +-y_
_r _r '

1 J

_XL Dy_ _Z_
K _ (%,_) _ (_,_) %-_--(_,_) _ = 1,2 (49)

_XL _y_ _Z_
_--_-- (_,_) _-T-(_,_) _ (_'_)

_, j, and _ are unit vectors and K is the magnitude of the

normal vector, the choice of which can be used to apply controls developed

in Eiseman [I] for the shape of coordinate curves in r and for the

distribution of constant r-surfaces. Applyi this procedure will force

the mesh to be orthogonal at the boundaries but not necessarily anywhere else.

A globally uniform computational mesh (for linear Sp in Fig. 6) can

be mapped onto a physical mesh with the polynomial N-surface transformations

given in Eqs. 6, 9, and 12. Concentration of mesh points in the r

direction is accomplished by choosing a function r(r) such that

where
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0 < r < I, 0 < _ < 1 and
m

dr > 0 (Fig. 13).
dr

For example Smith and

IQ

Fig. 13 - Grid control.

Weigel [3] used the function

ekr_l

ek -I
; Osr_l, (50)

to contract the physical grid toward one boundary or the other. The number k

is a free parameter whose magnitude dictates the degree of contraction. When

is replaced by _(r) in Eq. 6, the contractive function becomes embedded

in the linear polynomial part of Eq. 6, which results in

x = X2((,_)_ + Xl((,r)(l - T'),

r

y = Y2((,5)_ + YI(_,_)(I - _), (5])

106
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-_ where a uniform partition of 0 < r < 1 yields a desired nonuniform partition
i _ _
' _- of 0 < 7 < 1 that, in turn, proportionately partitions the linear segments of

the transformation.

The example previously presented can be derived with this approach

where

x(() = Xl(_,(): X2((,_): ='

yl(_,C) = yl(_) = (X L tan Oy

and

y2(C,C) = y2(_) = _XL(tan Oy + YL )

z(_,_) = ZI(_,¢) = Z2(_,_) = _XL(tan 0z + ZL)_ + _XL tan Oz(l - _),

k3_ kl(
_=e -I _=e -I

$

k3 kl
e -I e - 1

y = Y2(_)r + YI(_)(I - _),

(52)

z : z(_,_),
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where

k2r_1
_ e

k 2
e -1

A fundamental constraint of this approach is the representation of

the boundaries. The boundaries can be represented as analytical functions

or approximate functions based on discrete data from the boundaries.

In either case the representation must be in a form where parametric

variables which can be normalized to the unit interval are the independent

variables. If the parametric independent variables are chosen to be

s and t, then for the two boundaries

x ÷ Xl(S,t),

YI(_,_) ÷ Yl(S,t),

ZI(_,_) ÷ Zl(S,t ),

X2(_,_) ÷ X2(s,t ),

Y2(_,_) ÷ V2(s,t), (53)

Z2(_,_) ÷ Z2(s,t ),

0 S _ S 1, Smi n < s <__Smax,

I O8

0 <__ <_I, tmi n _ t S tma x.



The choice of parametric variables can vary from problem to problem.

A relationship between (_,_) and (s,t) is

s : _(Sma x - Smi n) + Smi n,

t = _(tma x - tmi n) + tmi n-

(54)

This is a linear relation which maps the unit interval onto the parametric

variables. Contraction of the physical grid at the boundaries is

accomplished in the same manner as for the internal grid distribution.

= o,

= £ > o,
' dc

0 < _ < I, 0<_ <I,

(55)

0 <__ <_1, 0 <__ <_l.

z

A_oproximate Boundary-Fitted Coordinate Systems Usin9 Tension Spline

Functions

It is often the case that boundaries in a physical domain are

described by discrete sets of points. The boundaries may be open or

closed. An approximate boundary-fitted coordinate system can be obtained

using the technique described and a tension spline function interpolation

to the discrete data defining the boundaries. Tension splines are chosen
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because standard cubic splines and other higher order approximation

techniques often result in wiggles in the approximation. Wiggles on a

boundary using the technique propagate into the interior grid. The tension

parameter embedded in the tension spline approximation to the curve

allows control of the "curvedness" of the approximation. A very large

magnitude of the tension parameter corresponds to a linear approximation,

whereas a very small value corresponds to cubic splines. Tension splines

can be applied in two and three dimensions. An example is presented

here that is applicable to a two-dimensional mesh.

Using the tension spline technique, a point set on boundary one is

i=n j=m
defined by {xi,Yi}i= 1 and on boundary two by {xj,yj}j= I. Approximate

arc length is used as a parametric independent variable. The approximate

arc length is:

si = [(Xi+l - xi)2 + (Yi+l - Yi )2]I/2 + si_ I,

I/2

sj : [(xj+ l - xj) 2 + (Yj+l - yj)2] + Sj-l'

V

i = l...n

j = l...m
(56)

s I = 0

O<s i <_s n

II0

0 <__sj <__s m.



Fromthe computational coordinate system the unit interval (0 < _ < I)

must be mapped onto each boundary; that is:

s : s(c),

0<_<I,

O<s<s n ,

(57)

O<s <_sm .

This is accomplished by letting

s = _s n on boundary one and

s = _s m on boundary two.

(58)

The tension spline functions are piecewise continuous hyperbolic

functions on each boundary such that

x = g"(s_)
sinh[_(sL+ 1 - s)]

o2sinh[o(SL+l - s_)]

sinh[o(s - sL)]

+ g" (sgo+l) sjL) ]o2sinh[_(sL+ 1 -

+
g"(sL)l s_+ 1 - s

2 ] s_+ 1 - s_

s_s )s_+ 1 - s_

(59a)
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y =
sinh[a(sL+ 1 - s)]
2

o sinh[q(sL+ 1 - s_.)]

+ h"(SL+l)

÷

sinh[o(s - s_)]
2

o sinh[o(s%+ 1 - sz) ]

Y_

YL+I

h"(sLi sL+ 1 - s )a 2 s_L+1 sRj

a2 s_+ 1 - s_ ' (59b)

= i on boundary one,

= j on boundary two,

a = tension parameter.

The unknowns in these equations are g"(sL) and h"(sL) which are second
Z=L

derivatives at the data points {x_,y_}_L=l and are obtained through enforce-

merit of the continuity of the first derivatives at the data points, and

the specification of two end conditions. A tridiagonal system of linear

equations results for each set of unknowns. The solutions of the tridiagonal

systems yield g"(sjL ) and h"(s_).

A cubic polynomial and the contracting function r - ekr - l
e k - l provide

the relationship between the computational domain and physical domain.
dX_ dY_

The derivatives drl and dn are:

dXL dYL
dn = K ds '

(6O)
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By defining a grid with constants A_ and Ar in the computational

domain a corresponding grid is explicitly defined in the physical domain.

An example of an airfoil grid is presented (Fig. 14). Data points on

each boundary, magnitude of the normal derivative, and contract parameter

values define the grids. Boundary data for the airfoil is shown in

Fig. 15. Also, for closed boundaries such as the airfoil, periodic

conditions are applied in the spline functions.

Fig. 14 - Mesh for K_rm_n Trefftz
airfoil using splines under
tension.

Fig. 15 - Data definition for
boundaries of K_rnl_n Trefftz
airfoil domain.

Complex Three-Dimensional Mesh Generation

The development of three-dimensional meshes where mesh lines are free

to move in all three coordinate directions is extremely difficult. The

reader is directed to reference 9 for examples of such unconstrained three-

dimensional meshes. An expedient approach for complex three-dimensional

I13



geometries is to attempt to simplify the problem by rendering the three-

dimensional geometry quasi two-dimensional. This is the essence of the

frustrum pyramid meshpreviously presented. Also when there is axis-

symmetry in a problem, two-dimensional rendering of the geometry is

possible. This is demonstrated with the spike-nosed configuration shown

in Fig. 16. Figure 17 shows an algebraic generated meshfor one plane

Fig. 16 - Surface for a spike-nosed body.

of the geometry. The mesh is madethree dimensional by rotating the mesh

in movementsabout the axis of symmetry.

For aircraft surfaces the problem is more difficult. There are,

however, several good software packages ([12] is a good example) for

surface definition of aircraft aerospacecraft geometries. In [12]
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Fig. 17 - Mesh for spike-nosed body.

=

the Harris geometry is used to establish coordinates for Coon's surface

definition of a configuration. Spline functions are used to compute

the derivatives for the Coon's surface definition. Figure 18 shows the

input description for a wing-fuselage configuration where the wing and

fuselage are defined separately. Figure 19 shows an enriched definition
5-

of the configuration using the Coon's surfaces. A part of the available

software described in [12] is the ability to compute the intersection

of an arbitrarily defined plane and the Surface definition. For the

configuration shown in Fig. 19 pi Wes perpendicular' to ! Lhe :=_x axis and

at a constant increment in the x direction are shown in Fig. 20.
.=

If an outside boundary is defined the corresponding intersection with the
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Fig. 18 - Data definition for a wing-fuselage configuration.

Fig. 19 - Enriched surface definition for a wing-fuselage configuration.
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Fig. 20 - Planar intersections with a wing-fuselage configuration.

planes is computable. With an inside and outside boundary the techniques

previously described can be employed in two dimensions. Complexities

of multiconnected regions is introduced but this can be attacked with

branch cuts (Fig. 21).

OR!GI;'7.'\L p A ,'N IS

/i ...... ..

.......... f t.........

.......... \ y' ........
_ _--_ ....... \_ ....

......... _--__.._2__ _._ _

Fig. 21 - Branch cuts fogmulti'con_ected sections,
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Another attack on complex three dimensional problems is to define

several computational domains (Fig. 22) with mutual boundaries. The mapping

V

Fig. 22
Multiple computational domains with mutual boundaries.

function transforms the computational domains to parts of the physical

domain with mutual intersections.

Conclusions

Algebraic methods provide precise controls for mesh generation.

Methodologies for mesh construction can be based on a parameterized

description of surfaces which consist of bounding surfaces and intermediate

control surfaces. The surface locations determined by the respective

surface parameterizations determine the nature of the transverse coordinate

curves which connect the bounding surfaces. Relative to uniform conditions,

precise control over the mesh placement in the physical domain can be
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accomplished by embedding distribution control functions in the surface

parameterizations or in the transverse direction. Complex bounding

topologies, especially in three dimensions, cause mesh construction

difficulties. It is proposed that whenever feasible, the complex topol-

ogy be simplified such as rendering the geometry quasi two-dimensional. As

a final remark, precise controls are one of the major advantages of algebraic

methods: they give the capability to prescribe specific desirable and

helpful mesh formations.
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Generation of Boundary and Boundary-Layer Fitting Grids

C. M. Ablow and S. Schechter

SRI International

Menlo Park, CA 94025

f

ABSTRACT

The details of extended physical processes, such as the gas dynamic

flow over an airfoil, the reactive flow through a combustor, or the electric

field in a multi-contact transistor, are understood by solving the dif-

ferential equations of a mathematical model of the process. The accuracy

of finite difference methods for the numerical solution of the equations

is increased if the underlying mesh fits the region boundaries and is

closely spaced in regions where the solution is rapidly varying. Automatic

methods for producing a satisfactorily adjusted mesh have been developeed

for one-dimensional problems. In one simple, effective scheme of this

kind the unknown function and the distribution of mesh modes are found

simultaneously, the nodes being placed so that they correspond to points

uniformly spaced on the solution curve.

In a two-dimensional generalization, the nodes correspond to points

equally spaced on the solution surface in two directions that are as nearly

orthogonal as possible. Examples of such meshes are shown for given surfaces

in the figures. The meshes fit the circular boundaries and come closer

together where the given surface is steeper.

*Support by the Air Force Office of Scientific Research is gratefully

acknowledged.
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GENERAL GRID GENERATION METHOD

Map problem domain onto unit cube in

computational coordinate space. Uniform,
rectangular grid in computer coordinates
gives curvilinear grid in original domain.

Y C B

Map

IL

X

C

--4
I
I

I

I
_J

0

I

i i I
I I
I I--
I I
T-- -+--

I
t I

j
I i
I I

A

Choose map to reduce truncation error of
finite difference solution scheme for
problem.

B
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Problem: Find z(x,y) so that

= p(x,Y) in x2 ++Y: < 1"
(*) Zxx +

ZzYY o(x,y) on x 2 2 = 1

with p and b given functions. _....

Change coordinates:

a gz_ -
(*)

a_ j

ds 2 _--__dx 2 + dy 2

e = x_ 2 + y2

(x,y) -- ( _:, _ )

fz_ _ ez_ - fz_
._ = jp

_ J

= ed_ 2 + 2fd_d_ + gd_ 2

f = xCx_ + YCY_

g = x 2 + y 2

j = (eg - f2)1/2

Truncation error of centered finite-difference approximation

2_ 1 gz¢_¢¢A_ 2 + ez__
12j

- 4f(z_ A_ 2 + z_ZI_

Choose boundary-fitting map to •
(1) Minimize (f/j)2

_. (2) Reduce errors in separate
and _ directions. .....

One-dimensional monitor function* methOds are

satisfactory for (2). Boundary adjustment of

map used for (1).

*A. B. White, Jr., SIAM J Num Anal 16 (1979)
C. M. Ablow and S. Schechter, J. Comp Physics 27 (1978)
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One-dimensional monitor function takes equally
spaced values at mesh modes.

Simplest, effective, problem-dependent monitor
is distance on solution surface:

ds

d_ is to be constant as _ varies

8 (x 2 + y 2 + z 2)(1) -_- = o
Same for w direction

-_--_ (x_ 2 -t- y 2 -t- z_ 2) = 0(2) o_

(1) and (2) plus given differential equation (*)
for z determine solution when corner points
O,A,B,C have been chosen. Corners are moved
to minimize T (f/j)2

Examples show grids found from (1) and (2)
for various given functions z having regions
of sharp Variation (boundary layers). In
practice, function z and the grid mapping
would be found by simultaneous solution of
the complete set of differential equations
(1), (2), and (*).

]24
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Level lines for
z tanh px

in unit circle,

Equidistant mesh
p-l.0

i
Equidistant mesh

p=2.0

Equidistant mesh
p - 8.0

-k

_z

_...J
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Level lines for z =

tanh[p(x cos 30 -I- y sin 30) + 0.5]
EqUidistant mesh

p = 1.0

Equidistant mesh

p=2.0
Equidistant mesh

p--4.0
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Level lines for

z=tanhp (R- 1.2)

R 2=(x- 1)2 +y2

Equidistant mesh
p--4.0

Equidistant mesh
p=l.0

Equidistant mesh
p = 8.0
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AN ELECTROSTATIC ANALOG FOR GENERATING CASCADE GR]DS

John J. Adamczyk

NASA Lewis Research Center

ABSTRACT

Accurate and efficient numerical simulation of flows through turbomachinery

blsde rows depends on the topology of the computational grids. These grids must

reflect the periodic nature of turbomachinery blade row geometries and conform

to the blade shapes. Three types of grids can be generated that meet these min-

imal requirements: (i) through-flow grids, (2) O-type grids, and (3) C-type

grids. This paper presents a procedure which can be used to generate all three

types of grids. The resulting grids are orthogonal and can be stretched to

capture the essentLa] physics of the flow. In addition, a discussion is also

presented detailing the extension of the generation procedure to three-

dimensional geometries.
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BLADE GEOMETRY AND COORDINATES

The development of the grid generation procedure begins by considering the

electrostatic potential field generated by an infinite linear array of point

charges in a two-dimensional space. The density of the charges is assumed to

alternate between plus and minus i. The mathematical expression for the com-

plex electrostatic field is given by equation (i), where K(z - Zo) is the com-

plex potential and i = _. For a Cartesian space z = x + iy, zo is the

location of the zeroth charge and s is the physical distance between charges.

For a blade row whose geometry is given on a blade-to-blade surface of revolu-

tion, z = m + i0, where m is the meridional distance and _ is the angular

position; s then represents the angular distance between charges.

I y

O

x.i

130

K(z - Zo) :

0 +]

S

+1

o-1

Array of point charges

oo

I
n=-oo

(-i) n in(z - z o - ins)

- Blade-to-
bladesur-
face

Bl_e-lo-bl_ surfaceof revolution.
sl_owing m - e coordinates,

(i)
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DEVELOPMENT OF EQUATION FOR POTENTIAL FIELD SURROUNDING THE BLADE

The field equation for the array of point charges is expressed in closed

form in equation (2). Note that this expression is periodic in either the y-

or 0-direction with period 2s. The potential field generated by distributing

the fundamental solution (eq. (2)) over the surface of a blade is given by equa-

tion (3), where y(z o) is the source density distribution on the blade surface.

It is required that the real part of _ (that is, _) be equal to 1 on the

blade surface (eq. (4)). At large distances upstream or downstream of the

cascade, _(z) is assumed to approach zero. This additional requirement is

expressed by equation (5). Equation (3) evaluated on the blade surface forms a

singular integral equation, equation (6), for the source density. Once y is

known, the potential field surrounding the blade can be computed by direct

integration of equation (3).

(z - Zo)_

K(z - zo) = I (-I) n in(z - zo - ins) = in tanh 2s
(2)

Z

_(z) = fL Y(z°)K(z- z°)dz°

Real iJ(z) = _(z) - 1 (z _ L)

(3)

(4)

Im _ y(zo)dz o = I

(5)

zo>  o1
(z C L) (6)
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DEVELOPMENT OF EQUATIONS FOR SOURCE DENSITY DISTRIBUTION

The singular integral equations for y can be solved by paneling methods
similar to those used in solving potential flow prob]ems in fluLd mechanics.

To employ these procedures, one first factors out of the integral equation its

singular behavior. (For eq. (6) the factored form is expressed by eq. (7).)

Next the blade surface L is divided into a series of segments. Over each of

these segments ¥(z°) and InI( 2s _s_z £ Zo)_ tanh (z - Zo) are approximated by

polynomials in zo. For the cases examined to date it wa_ found that these

terms could be approximated by a constant equa] to their value at the midpoint

of each segment. (This approximation assumes the length of the segment could

be made smaller than the scale of the local geometric blade features.) Thus

the singular part of equation (7) integrated over a segment is approximated by
equation (8), while the regular part is approximated by equation (9). The

auxiliary condition (eq. (6)) is approximated over a segment by equation (i0).

Upon introducing these approximations into equation (7) and restricting the

value of zo to the midpoint of each segment, a system of linear algebraic

equations is obtained from which y(zo) can be determined.

IfL (z - Zo)_1 = Real Y(z o) in 2s dzo

fL 2s (z - Zo)_ o]+ _'(zo) In (z - Zo)_ tanh 2s dz (7)
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_a Y(z°) In

(Z - ZO)Z

2s - dzo _ Y(Zo) _z - b) in (z - b)

-(z- a)]n (z - a) + b - all b+a
ZO--- _-

b Y(z o) in
2s (z- Zo)_

(z - Zo)_ tanh 2s dzo

Y(z o) Ib - a) In
2s

(Z - ZO)Z

tanh
(z - z°)v-_I b+a_s

IZo=_ -

Y(Zo)dZo _ Im[¥(Zo)(b - a)_ b+a
g°_ 2
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BOUNDARIES OF COMPLEX ELECTROSTATIC FIELD SURROUNDING THE BLADE

With Y known, the complex electrostatic field surrounding the blade sec-

tions can be found. The real part _ and the Imaginary part _ of the field

form a periodic orthogonal body-fitted coordinate system. The contours

= Constant enclose the blade, whi]e the curves n = Constant project from

the blade (i.e., _ = i) to the periodic boundary (_ = 0). The curves extend-

ing to upstream and downstream infinity are denoted _ = 0, _ = ±L, respec-

tively. The locations of these bounding coordinate curves are found using a

Newton-Raphson scheme with equation (3) to numerical]y generate the inverse

mapping function. This procedure, however, because of its slow computational

speed, was not used to construct the interior grid contours.

$ ....

T]= 0

_)RIGINAE PAJE IS

OF POOR QUALITY
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IN_fERIOR GRID

The interior grid points are constructed from the solution of the inverse

electrostatic problem in which (x,y) or (m,@) are specified as functions of

or D on the boundaries. The field equation for this is Laplace's equation in
terms of (_,D) (eq. (]i)). The solution of equation (ii) which satisfies

boundary conditions consistent with the coordinates of the bounding curvilinear

curves yields the interior grid geometry. This solution can be obtained by
either numerical or analytical procedures.

_ _2 (x,m)_2(x, m) +

_2 8n2
- 0

_+_= 0

_2 _2

(Ii)

I] = -h

(x,m) = f(_) J
(Y,_) --g(n)"

(x,m) = h(_)

(y,_) = r(_)

_= 0
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GRID CLUSTERING

Grid clustering to capture the physics Of the flow field can be introduced

prior to or after the solution of the inverse problem is obtained. To insure

orthogonality, the stretching functions used for clustering must be one-

dimensional (i.e., eqs. (12)). The _ transformation can be quite arbitrary.

For potential flow computations, a linear transformation is generally used.
For viscous flows, one attempts to cluster grid points near the blade surface.

An example of a transformation which can be used for this purpose is given by

equation (13). The parameters mo,ml control the degree of stretching in the

transformation. The clustering of grid points in the r-direction requires

special consideration to insure that grid point periodicity is maintained. A

grid point located on the periodic boundary at _ = _o has an image at

= -Do" In order to maintain this property, the transformation in _ must be
an odd function of _ over the interval -L to L. A simple transformation

which exhibits this behavior is a polynomial in odd powers of _, an example

being given by equation (14). The parameters mo and m I in this transforma-

tion are again used to control the degree of clustering.

(12)

= mo< + (3 - m I - 2mo )_2 + (ml + mo - 2)<=

(13)

= mo_ +--i_(5 + 4m o - ml)_ 3 - --i_(3 - 2m o - ml)_ 3
2Lz 2L-

(14)

w.

',,,...,-

1

I
1

r

L

-L

-L
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GENERATION OF C-TYPE AND THROUGH-FLOW GRIDS

Thus far the application of the grid generation procedure has been

restricted to orthogonal O-type grids. To generate through-flow and C-type

grids by the current procedure, the blade contours must be modified by append-

ing slits of zero thickness to their surfaces. For C-type grids, one slit is

used. Its origin is generally taken to be the trailing edge of the blade. For

through-flow grids, two slits are appended, their origins being the leading and

trailing edges of the blade. The shape of these appendages can be quite gen-

eral. The generation of the grids associated with these modified b]ade pro-

files proceeds as in the O-grid procedure outlined above. The generated grids

are orthogonal and periodic. In the case of blunt blades, however, they
exhibit a singular behavior at the slit attachment point.
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GRIDS FOR CASCADES

For cascades of nonzero stagger, the C-type or through-flow grids generated

by the current procedure are discontinuous across the slit. This undes_rab]e

property can be corrected by a simple construction. First the two grid lines

connecting the upper periodic boundary and the trailing edge and the lower

periodic boundary and the trailing edge are found. Next the location and value

of n corresponding to the periodic image of A on the lower boundary (i.e.,

A') and B' on the upper boundary (i.e., B) are determined. The spacing of

grid points along the slit between EF is specified, which in turn determines

the distribution of n along both sides of the slit. Th_s in turn determines

the distribution of _ along the periodic boundaries AB and B'C'. The grid

points along A'B' are required to be periodic images of the points along AB.

This determines the distribution of n a]ong A'B' and the grid geometry up

to EB'. The construction of the grid downstream of B_C' proceeds in the

same manner as outlined above, with the grid spacing along B'C' defining the

clustering pattern. The resulting grids will remain orthogona] and periodic

under this construction procedure.

E

E

F

\ \ \

\ \ \

\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \

\ \ ,

\

C !
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DEVELOPMENT OF THREE-DIMENSIONAL GRIDS

Three-dimensional grids can also be developed by the current procedure.

The geometry of a typical blade assembly as viewed in the meridional plane is

shown in the accompanying figure. Let the surfaces of revolution describing

the hub and shroud be denoted by r = fH(x), r = fs(x). A surface of revolu-
tion bounded by these limits is given by equation (15). Similarly, let m

denote the percentage of distance measured from the leading edge of the blade

along the surfaces of revolution (eq. (16)). On a surface of revolution the

blade section geometry is given in terms of m and 0, where e is the

angular location around the wheel. On the blade surface of revolution m

and e can be expressed in terms of the coordinates _,n of the current

orthogonal system. The resulting coordinate system (<,_,q) will be orthogonal
on a _-plane and conform to the blade hub and shroud surface.

8 j

J

Y

x

/

r - fH(x)

fs(X) - fH(x) (fH <- r _< fs) (15)
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EXAMPLE O-TYPE GRID FOR TURBINE STATOR BLADE

An example of an O-type grid generated by the current procedure is shown

on the accompanying figure. The blade is a turbine stator with approximately

90° of turning. No stretching was introduced in developing the grid. In

regions of high s_rface curvature there is a high concentration of grid points,

thus permitting accurate resolution of the local flow physics. Far removed

from the blade, the concentration of grid points becomes sparse. This results

in an economical distribution of grid points in regions of uniform flow. The

grid as shown was generated to solve a potential flow problem. For viscous

flow, a stretching of the _ contours would have to be introduced to capture

the boundary-layer region. In addition, the q lines would have to be

clustered in the trailing-edge region to resolve the viscous wake.
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EXAMPLE THROUGH-FLOW GRID FOR A TURBINE ROTOR BLADE

The next example is a through-flow grid for a high-reaction turbine rotor.

This grid, as described earlier in the paper, was generated by appending two

slits to the blade surfaces. The grid geometry is rectangular and periodic

upstream and downstream of the cascade. Across the wake the grid geometry Ks

seen to be discontinuous. The use of such a grid would require special care
in transferring flow variables across the slit.

]4O
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EXAMPLE C-TYPE GRID FOR A TURBINE ROTOR BLADE

The accompanying figure shows a C-type grid for the preceding turbine

blade. Upstream of the blade the grid geometry is similar to an O-type grid,

while downstream it resembles a through-flow grid. For this grid the con-

struction procedure outlined earlier was used to insure continuous grid geom-

etry across the slit. For potential flow analysis the grid as shown is quite

suitable. For viscous analysis a clustering of the grid lines near the blade

surface and trailing-edge region wou]d have to be introduced to accurately

resolve the flow physics.

il: :--i
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EXAMPLEC-TYPEGRIDFORCASCADEOFNACA0012 AIRFOILS

The final example is a C-type grid for a cascade of NACA0012 airfoils.
This grid was generated by When-HueiJou of Flow Research. The grid generation
procedure as modified by him produces grids which are nearly orthogonal. The
slight nonorthogonality is due to stretching functions used to maintain con-
tinuous grid geometry across the slit and cascade periodicity. This grid was
generated to solve a two-dimensional potential flow problem. It can also be
used to solve a three-dimensional potential flow problem, provided the inviscid
wake is convected downstreamalong the slit. For viscous flow calculation a
clustering of grid points near the body and wake region would have to be
introduced.

v
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FINITE DIFFERENCE GRID GENERATION BY MULTIVARIATE

BLENDING FUNCTION INTERPOLATION*

Peter G. Anderson and Lawrence W. Spradley

Lockheed-Huntsville Research & Engineering Center

Huntsville, Alabama

ABSTRACT

The General Interpolants Method (GIM) code solves the multi-

dimensional Navier-Stokes equations for arbitrary geometric domains.

The geometry module in the GIM code generates two- and three-

dimensional grids over specified flow regimes, establishes boundary

condition information and computes finite difference analogs for use in

the GIM code numerical solution module. The technique can be classified

as an algebraic equation approach.

The geometry package uses multivariate blending function interpola-

tion of vector-values functions which define the shapes of the edges and

surfaces bounding the flow domain. By employing blending functions

which conform to the cardinality conditions the flow domain may be mapped

onto a unit square (Z-D) or unit cube (3-D), thus producing an intrinsic

coordinate system for the region of interest. The intrinsic coordinate

system facilitates grid spacing control to allow for optimum distribution

of nodes in the flow domain.

The GIM formulation is not a finite element method in the classical

sense. Rather, finite difference methods are used exclusively but with the

difference equations written in general curvilinear coordinates. Trans-

formations are used to locally transform the physical planes into regions

of unit cubes. The mesh is generated on this unit cube and local metric-

like coefficients generated. Each region of the flow domain is likewise

transformed and then blended via the finite element formulation to form

the full flow domain. In order to treat ,,completely-arbitrary*' geometric

domains, different transformation functions can be employed in different

regions. We then transform the blended domain to physical space and solve

the Cartesian set of equations for the full region. The geometry part of the

problem is thus treated much like a finite element technique while integration

of the equations is done with finite difference analogs.

*This work was supported, in part, by NASA Langley

Contracts NASI-15341, 15783, and 15795.
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BUILDING BLOCKCONCEPT

The development is done in local curv[linear intrinsic coordinates based

on the following concepts:

• Analytical regions such as rectangles, spheres, cylinders,
hexahedrals, etc,, have intrinsic or natural coordinates.

• Complex regions can be subdivided into a number of

smaller regions which can be described by analytic

functions. The degenerate case is to subdivide small

enough to use very small straight-line segments.

• Intrinsic curvilinear coordinate systems result in

constant coordinate lines throughout a simply

connected, bounded domain in Euclidean space.

• The intersection of the lines of constant coordinates

produce nodal points evenly spaced in the domain.

• Intrinsic curvilinear coordinate systems can be pro-
duced by a univalent mapping of a unit cube onto the

simply connected bounded domain,

Thus, if a transformation can be found which will map a unit cube uni-

valently onto a general analytical domain, then any complex region can be

piecewlse transformed and blended using general interpolants.

L __

V

Consider the general hexahedral configuration shown. The local intrinsic

coordinates are 131, 712, _3 with origin at point Pl' The shape of the geometry

is defined by

• Eight corner points, P.
1

• Twelve edge functions, E.
1

• Six surface functions,-S.
1

This shape is then fully described if the edges and surfaces can be specified

ascontinuousanalyticvectorfunctionsS-i(x'y,z),El(X,y,7.)
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GENERALINTERPOLANTFUNCTION
V

Based on the work of Gordon and Hall we have developed a general

relationship between physical Cartesian space and local curvillnear intrinsic

coordinates. This relation is given by the general trillnear interpolant shown

on the adjacent figure.

In this equation, X vector is the Cartesian coordinates

_(rll,'qz, rl 3)

x (rl 1, "q 2, N 3)" ]
Y (_ t' r12' "rl3) /

z (.q 1' rt2' 'r] 3)..]

and Si, E i are the vector functions defining the surfaces and edges, respectively,

and Pi are the (x,y,z) coordinates of the corner points. Edge and surface func-

tions that are currently included in the GIM code are the following:

• EDGES (Combinations of up to Five Types)

Linear Segment
Circular Arc

Conic (Elliptical, Parabolic, Hyperbolic)
Helical Arc

Sinu soidal Segment

• SURFACES (Bounded by Above Edges)

Flat Plate

Cylindrical Surface

Edge of Revolution

This library of available functions is simply called upon piecewise via input

to the computer code.

With this transformation, any point in local coordinates _]I' 712' D3 can

be related to global Cartesian coordinates x,y,z. Likewise any derivatives

of functions in local coordinates can be related to that derivative in physical

space.
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INTERNALFLOWGRID

(Axisymmetric Rocket Nozzle)

The grid shown was used to compute the flow in a model of the Space

Shuttle engine using the GIM code, The mesh is stretched in the radial direc-

tion to cluster points near the wall and stretched axially to place points near

the throat of the nozzle. Only a portion of the complete grid is shown for

clarity and illustration. The grid shows the general format used by the GIM

code for internal, two-dimensional flows in non-rectangular shapes.

01: .... '...... - "
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EXTERNALFLOWGRi D

(Two-Dimensional Blunt BodyFlow)

This figure shows a polar-like grid used for computing external flow

over a blunt body. The body surface is treated invisc[dly, and thus does

not require an extremely tight mesh. The outer boundary is the freestream

flow. The grid illustrates the GIM code technique for two-dimensional ex-

ternal flows using a polar-like coordinate system.
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EXTERNAL FLOW GR! D

(Non-Orthogonal Cu rvilinear Coordinates)

The nodal network for the external flow over an ogive cyl£nder illustrates

the capability of the GIM code geometry package to stretch the nodal distribu-

tion. The grid is very compact in the leading edge regEon and greatly expanded

in the far field areas. The axial points follow the body surface and could gen-

erally be called ',body_oriented coordinates', in the nomenclature of the litera-

ture. The radial grid lines are not necessarily normal to the lateral lines or

to the body surface. The GIM code, through its "nodal-analog,, concept can

operate on this general non-orthogonal curvilinear glqd.

150
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TH REE-DIMENSIONAL GRI D

(Simple Rectilinear Coordinates)

Supersonic flow in expanding ducts of arbitrary cross section is a common

occurrence in computational flu[d dynamics. This figure Lllustrates a simple

grid for a three-dimensional duct whose cross sect[on varies s[nuso[dally with

the axial coordinate. The "top" wall and the ,'front' wall have this s[nuso[dal

var[atlonwh[le the "bottom" and'_back" walls are flat plates. The grid shown

was used to resolve the expand[ng-recompress[ng supersonic flow _nclud[ng the

intersection of the two shock sheets.

2

i_¸
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THREE-D IMENSIONAL GRI D

(Pipe Flow in a 90 (leg ElbowTurn)

There are numerous flow fields of interest which contain a sharp turn

inside a smooth pipe. The GIM code has treated certain of these for appl[ca-

tlon to jet deflector nozzle flow in VTOL aircraft. The portion of a grid shown

in the adjacent figure was used for this calculation.

The 90 deg elbow demonstrates the capability to model three-dkmensional

non-Cartesian geometries. The internal nodes were emitted for clarity. The

elbow grid was generated by employing edge-of-revolution surfaces with circular

arc segments as the edges being revolved.

V

]52



k_J

GRID FORSPACESHUTTLEMAIN ENGINE

(Hot Gas Manifold Geometry Model)

The recent problems encountered with the Space Shuttle main engine

tests have resulted in a GIM code analysis of the system. The "hot gas mani-

fold" is a portion of this analysis for the high pressure turbopump system.

The grid shown in the adjacent figure was used for this calculation. Only a

small number of nodes are shown for clarity; the full model consists of approx-

imately 14,000 nodes. The extreme complexity of this geometry illustrates

the necessity of using a OlM-Ilke technique. Transforming this case to a

square box computational domain is, of course, impossible. The results of

the GIM code analysis agree qualitatively with flow tests that have been run

on the hot gas manifold.

Hot Gas Manifold Configuration
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GRI D FOR SPACE SHUTTLEMAI N ENGINE

(Hot Gas Manifold Geometry Model)

_On_e_all _i!

Outer Wall

Outer Duct

Inner Duct
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SUMMARY

Finite difference grids can be generated for very general con-

figurations by using multivariate blending function interpolation.

The GIM code difference scheme operates on general non-

orthogonal curvilinear coordinate grids.

This scheme does not require a single transformation of the

flow do;-nain onto a square box. Thus, GIM routines can indeed

treat arbitrary three-dimensional shapes.

Grids generated for both internal and external flows in two and

three dimensions have shown the versatility of the algebraic

approach.

The GIM code integration module has successfully computed

flows on these complex grids, including the Space Shuttle

main engine turbopump system.

Plans for future application of the code include supersonic flow

over missiles at angle of attack and three-dimensional, viscous,

reacting flows in advanced aircraft engines. Plans for future

grid generation work include schemes for time-varying networks

which adapt themselves to the dynamics of the flow.
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Component-Adaptive Grid Embedding

E. H. Atta

Lockheed-Georgia Company

i _ z _!_

Introduction"

One of the major problems related to transonic flow prediction

about realistic aircraft configuration is the generation of a suitable

grid which encompasses such configurations. In general, each aircraft

component (wing, fuselage, nacelle) requires a grid system that is

usually incompatible with the grid systems of the other components;

thus, the implementation of finite-difference methods for such

geometrically-complex configurations is a difficult task.

In this presentation a new approach is developed to treat such a

problem. The basic idea is to generate different grid systems, each

suited for a particular component. Thus, the flow field domain is

divided into overlapping subdomains of different topology. These

grid systems are then interfaced with each other in such a way that

stability, convergence speed and accuracy are maintained.

++-+ •

_ +. o
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Model : V

To evaluate the feasibility of the present approach a two-dimensional

model is considered (figure I). The model consists of a single airfoil

embedded in rectangular boundaries, representing an airfoil in a wind

tunnel or in free air. The flow field domain is divided into two

overlapping subdomains, each covering only a part of the whole field. The

inner subdomain employs a surface-fitted curvilinear grid generated by an

elliptic grid-generator (ref. I), while the outer subdomain employs a

cartesian grid. The overlap region between the two subdomains is bounded

by the outer boundary of the curvilinear grid and the inner boundary of the

cartesian grid.

_""77 ....

L

Figure I.- Composite grid for an airfoil.
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A_E___roach :

Figure 2 shows the two subdomains (A,B) of the flow field;

each has a grid adapted to suit its geometry. The flow in both

subdomains is governed by the transonic full-potential equation.

While a Neumann-type boundary condition is used at the inner bound-

ary of subdomain B (overlap inner boundary), a Dirichlet-type

boundary condition is used at the outer boundary of subdomain A

(overlap outer boundary). These boundary conditions are updated

during the solution process. The implicit approximate factoriza-

tion scheme is used in both grid systems. The code of ref. 1 is

modified to fit into the present scheme.

The solution process is performed in cycles, starting by

solving for the flow field in subdomain A, then switching after a

number of iterations to solve for the flow field in subdomain B.

During each cycle the overlap boundary conditions are updated by

using a two dimensional second order Lagrangian interpolation scheme.

This process is then repeated until convergence is achieved in both

subdomains.

Figure 2.- Grid topology for the different subdomains.

159



Comparison with a homogeneous grid"

The results of the present method are compared with the results

obtained from using one homogeneous grid for the entire flow field

(ref. I). In all the test cases considered, a standard grid with

(31 x 147) points and a circular outer boundary located 6 chord-

lengths away from the airfoil are used. (See figure 3.)

V

Figure 3.- Uniform grid for an airfoil (ref. I).
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C_om_]_utedResults"

Results of the present method are compared with the results

obtained from the code of ref. I. Two sets of parameters affecting

the performance of the numerical scheme are listed in tables I and

II. Figures 4 and 5 display the pressure-coefficient distributions

for a NASA-O012 airfoil resulting from the flow field solutions.

The results are in good agreement for both subcritical and super-

critical cases; savings in computing time are achieved by reducing

the size of the flow field covered by the curvilinear grid

(subdomain A).

C
P

.6

.L_ 0

[]
.2

0 homogeneous nrid

@IJ composite grid

o_

o%

I I I
.0 .2 ._ .6 I.

qb
0

D

_.q 0

Figure 4.- Comparison of pressure coefficient for NACA-O012.
(M-- 0.75, a = 0.)
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.0 ,
.2

0 homogeneous grid

• [] composite grid

I

.6
X

%
0

H

0

Figure 5.- Comparison of pressure coefficient for NACA-O012.
(Mo_ = 0.8, c_ : 0.)
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Flow Field Topolo__lgooo__:

The extent of the overlap region between the different grids and

the relative size of each subdomain are the main factors affecting

the accuracy and convergence speed of the present scheme. Figure 6

shows the flow field topology for several test cases. In these cases

the overlap extent and subdomain sizes are varied to determine their

optimum values that will minimize the computing effort, while maintain-

ing a reasonable accuracy.

i
]
I

F:

E

! 1 I,_L 11 I i

Z F_

Z

Figure 6.- Flow-field topology with different grid-overlap.
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Overl a__p_ar ra ng ement:

Test cases with different grids-arrangement are compared to

determine the optimum choice for the extent of the overlap region.

A work factor w [number of iterations for convergence x number

of grid points (curvilinear grid)] is taken as a measure of the

computing effort. Numerical results show that increasing the ex-

tent of the overlap region decreases the number of iterations for

convergence; however, this also increases the computing effort

(figure 7). To minimize the computing time the Cartesian grid

should overlap 15-25% of the curvilinear grid, and the inner

boundary of the Cartesian grid should not be located less than

0.25 chord-length away from the airfoil.

W

7

3

x 105

L

] l I , I l |
J

Figure 7.- Effect of overlap parameters on work factor w.
(NACA-O012, M_ = 0.8, _ = 0.)
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Computed Results:

The use of nonoptimal parameters for grids arrangement (overlap

extent, relative grid sizes) can produce inaccurate results and/or

slow down convergence. The Peaky pressure coefficient distribution

shown in figure 8 is corrected by increasing the extent of the

overlap region described in Table III.

.0

0

.No

[]

0 homogeneous grid

• rl composite grid

0

V

Figure 8.- Comparison of pressure coefficient for NACA-O012.
(Moo = 0.75, _ : 0.)
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Co_C_om_putedResults"

Figures 9 and I0 display the pressure coefficient distributions

for two lifting cases for the parameters described in Tables IV and

V. The evolution of circulation, and hence lift, is slowed down as

the solution process alternates between the different grids. This

is dealt with by decreasing the number of iterations performed in

each grid.

\

°o°° °°ocvo °
.2 oo

0
.0 L 1

• ,2 ._

0

© homogeneous grid

• composite grid

°°o o
Oo o •

Oa_O X ,

-.6

Figure 9.- Comparison of pressure coefficient for NACA-O012.
(M= = 0.63, m = 2o .)
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Errors in sonic line position:

Should the shock wave extend into the overlap region, the

interpolation process can produce errors in the shock location

and strength. Comparisons of the results of the present method

with those of a homogeneous grid shows that the maximum relative

error did not exceed 1.5%. (See figure II.)

I

+

i

I
i
I
i

I x

%J

y

.7

S

3

homogeneous

grid

m

m

.I
X

.+.I I I I l I I I ]

0 .2 .q .6 .8 I.

Y[ R=3

.7I._ L=I .5 1

,+
° I 1 X

0 .2 .q .6 .8 I.

Figure II.- Effect of interface location on sonic line position.
(NACA-O012, M_ = 0.8, _ = 0.)
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Conclusion :

A method for interfacing grid systems of different topology is

developed. This offers a new approach to the problem of transonic

flow prediction about multiple-component configurations. The method

is implemented in a 2-D domain containing two grid systems of differ-

ent topology. The numerical scheme in the present method proved to

be stable and accurate. Savings in computer time and/or storage is

achieved by the proper choice of the overlap region between the differ-

ent grids.

Reference"
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Holst, T. L., "Implicit Algorithm for the Conservative Transonic Full-
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October 1979.
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Curvilinear grid

Cartesian grid

% cpu time reduction

as compared to TAIR
Code

location of subdomain

B outer boundary

Location of subdomain

B inner boundary

Location of subdomain

A outer boundary

number of cycles for

convergence

TABLE I

Code of Ref. l

TAIR Code

31 x 147 15 x 147

30 x 30

30%

6 chord-
length

l chord-

length

I chord-

length

9

Present Method

21 x 147

30 x 30

I0%

6 chord-

length

2 chord-

length

4 chord-

length

lO

1 72

Curvilinear grid

Cartesian grid

% cpu time reduction

as compared to TAIR
Code

location of subdomain

B outer boundary

location of subdomain

B inner boundary

location in subdomain

A outer boundary

number of cycles for

convergence

TABLE II

Code of Ref. 1

TAIR Code

31 x 147

Present Method

18 x 147

30 x 30

20%

6 chord-

length

l chord-

length

2 chord-

length

12

14 x 147

50 x 50

10%

6 chord-
length

1/4 chord-
length

l chord

length

15
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TABLE Ill

Curvilinear grid

Cartesian grid

location of subdomain
B outer boundary

location of subdomain
B inner boundary

location of subdomain

A outer boundary

Code of Ref. 1

TAIR Code

31 x 147

Present Method

I0 x 147

30 x 30

6 chord-

length

I/4 chord-

length

1.5 chord-

length

15 x 147

40 x 40

6 chord-

length

I/4 chord-

length

l chord-

length

V

Curvilinear grid

Cartesian grid

% cpu time reduction as
compared to TAIR Code

location of subdomain B

outer boundary

location of subdomain B
inner boundary

location of subdomain A
outer boundary

lift coefficient

number of cycles for

convergence

TABLE IV

Code of Ref, 1

TAIR Code

31 x 147

0.334

Present Method

15 x 147

30 x 40

39%

6 chord-length

l chord-length

3 chord-length

0.337

16
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Curvilineargrid

CartesianGrid

%cputimereductionas
comparedto TAIRCode

locationof subdomainB
outerboundary

locationof subdomainB
innerboundary

locationof subdomainA
outerboundary

lift coefficient

numberof cyclesfor
convergence

TABLEV

Codeof Ref.l
TAIRCode

31x 147

O. 574

Present Method

21 x 147

30 x 30

2%

6 chord-length

2 chord-length

4 chord-length

•584

l

14

V
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GRID AND METRIC GENERATION ON THE

ASSEMBLY OF LOCALLY BI-QUADRATIC COORDINATE TRANSFORMATIONS+

A. J. BAKER & P. D. MANHARDT

UNIVERSITY OF TENNESSEE/KNOXVILLE,

AND CoMCo, INC, KNOXVILLE, TN

ABSTRACT

k.J

The generation of metric coefficients of the coordinate

transformation from a generally curved-sided domain boundary

to the unit square (cube) is required for efficient solution

algorithms in computational fluid mechanics. An algebraic

procedure is presented for establishment of these data on the

union of arbitrarily selected sub-domains of the global solution

domain. A uniformly smooth progression of grid refinement is

readily generated, including multiple specification of refined

grids for a given macro-element domain discretization. The

procedure is illustrated as generally applicable to non-simply

connected domains in two- and three-dimensions.

+R AFOSR-79-O005esearch principally supported by USAF Grant No.

_- -Till
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COMPUTATIONAL REQUIREMENT

NAVI ER-STOKES EQUATIONS

L(qi) - Bt + a ujqi + fij = 0

aq i ^

_(qi ) = azq i + a2 _j nj + a3 = 0

COORDINATE TRANSFORMATION

a-aI lankxi = xi(nj ) axj _n k _xj

= _.an k] aq k

: --j-1 Uk axj j

NUMERICAL SOLUTION ALGORITHM

• - }_[M30K0]{QI}Se [DET_}_[M3000]{QI} e {UBARK

m ]- { ETAK_L}e [M30K0 ] { FI- I } e - (0}

DISCUSSION

V

The Navier-Stokes equations contain the vector divergence

operator. The required transformation projects x i onto nj with

coordinate surfaces defined coincident with solution domain

boundaries. The Cartesian description of dependent variables is

retained, while the convection velocity is expressed in contra-

variant scalar components. The numerical solution implementation

requires nodal distributions of components of the forward and

inverse Jacobians, and _, _, and L are tensor summation indices
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LOCALLY BI-QUADRATIC COORDINATE TRANSFORMATION

7

=:

PHYSICAL DOMAIN TRANSFORMED DOMAIN

•+ }Txi - {N2('q) {XI) e

2

X

Two-Dimensional

x 2

x I
==_

Three-Dimensional

DISCUSSION

OR!GP¢)J, P;,:S 7S,
,,U,t_,_.-,_ : !T" " r ....07 ,_

The bi-quadratic cardinal basis {N2(_)} transforms the vertex

and non-vertex node coordinate description of a smooth region of

Rn onto the unit square or cube spanned by the locally rectangular

Cartesian coordinate system n, The inverse transformation J _ is

non-singular for a range of non-midpoint definitions of the non-

vertex node coordinates (x), yielding a non-uniform discretization

on Rn .
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EXAMPLE: COMPRESSORBLADE ROW

i

....... I

Macro-Domain
Discretization
Segment

DISCUSSION

!
Resultant Solution
Domain Coarse
Discretization

L, p
I

i

Resultant Macro-
Domain Fine
Discretization

Three of the ten macro-domains, used to form the blade row

discretization, are shown. The non-midside location of non-vertex

nodes produces the non-uniform grid, only a few gridlines of which

are shown. The inset illustrates a fine discretization of one

macro-domain. The coordinates of all nodes on boundaries of macro-

domains are unique.
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DETAILS OF THE COORDINATE TRANSFORMATION

NODAL COORDINATES {XI}:

x i _ {N2(nj)}T{XI}e

WHERE:

1
{N2(ni)} -

(l - n_)(1 - n_)(-n_ n2 - l)
(l + n_)(l - n2)( n_ n_ - l)
(l + _)(l + n_)( n_ + _ l)
(l - _,_)(l + _2)(-n_ + n2 - l)

2(] _1_)(I n_)
2(l + _)(l n_)
2(I n_)(l + n2)
2(I - nl)(l + q_)

JACOBIANS

E_x i]
a -[TT  jj=J(nj, xl)

L xij

: J-l(nj, XI)

DISCUSSION

Within a macro-domain, the components of both J and J-I are

continuous functions of nj and the global macro-node coordinate

pairs (triples) {XI}, 1 ± I _ n. Each global coordinate x i pos-

sesses an independent transformation; the corresponding Jacobian

must be of rank n to assure existence of J-_ Once the matrix

elements of {XI} are defined, selection of any coordinate (n_, _2)

defines a unique coordinate pair (xl, x2), i.e., a mesh point on

the refined grid in physical space.

1?9





w
#:

x._/

t.N 1 - 14699

Grid Generation for Time Dependent Problems: Criteria and Methods

Marsha Berger, William Gropp and Joseph Oliger

Department of Computer Science

Stanford University

Abstract

We consider the problem of generating local mesh refinements when

solving time dependent partial differential equations. We first discuss the

problem of creating an appropriate grid, given a mesh function h defined over

the spatial domain. A data structure which permits efficient use of the

resulting grid is described. Secondly, we show that a good choice for h is

an estimate of the local truncation error, and we discuss several ways to

estimate it. We conclude by comparing the efficiency and implementation

problems of these error estimates.

WHAT ADAPTIVE MESH GENERATIONFORTIME DEPENDENTPDE'S

OBJECTIVES REDUCE # MESH PTS

MINIMIZE OVERHEAD

TRADEOFF: EXTRA PTS. VS. EXTRALOGIC

V

REQU!REMENTS

• MARCHING ALGORITHMS WILL BE USED

• COMPUTING TRANS lENT SOLN BY FINITE DIFF.

• TIMESTEP SMALLER ON FINER GRIDS, MESH RATIO CONSTANT

• GRIDS MUST CHANGE WITH TIME

• COARSESTGRID DOES NOTCHANGEWITH TIME

"' Precedingpageblank

O_IH3M J_ON _NVq_ _tDVd ONIOHO_Hd
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DESCRIPTION OF GRIDS

• LOCALLY UNIFORM

• RECTANGLESOF ARBITRARY ORIENTATION. EXTENSIONS TO
CURVILINEAR GRIDS FITS INTO SAME FRAMEWORK

• SUPPOSE BASE GRID GO = .V FORM HIERARCHY OF
j Go.i

NESTEDGRIDS WHEREEACH REFINED GRID IS WHOLLY
CONTAINED INA SINGLE COARSER GRID

G_ = V G_] ]

• REFINED GRIDS CAN BE CONSTRUCTED AUTOMATICALLY
AT t= 0 FROM INITIAL DATA.

V

HOW GRIDS ARE FORMED

182

GIVEN A "MESH FUNCTION" h(s,y)USED TO DETERMINE
WHERETO PLACE REFINEDGRIDS.

FLAGGRID PTS. WHEREh( x, y) > E.

_i CLUSTER
ORIENTATION

GOODFIT ?



CLUSTERING

• NEAREST NEIGHBOR

d(PT.. CLUSTER) < dmax _>
PT. _ CLUSTER

• SPANNING TREES

CONNECT ALL PTS. ACCORDING TO SOME CRITERIA.

BREAK LONGEST LINKS,

• MINIMAL SPANNING TREES

• MINIMUM DIAMETER TREES

ORIENTATION

• FIT ELLIPSE TO FLAGGED PTS. OF A CLUSTER USING 1ST AND

2ND MOMENTS.

• USE MAJOR AND MINOR AXES OF THE ELLIPSE TO GET RECTANGLE

OR IENTAT ION.

(REF: D. GENNERY, "OBJECT DETECTION AND MEASUREMENT USING

STEREO VISION") PROCS. IJCAI. 1979. pp 320-327

• FIT M1N. BOX TO INCLUDE FLAGGED PTS. + SMALL BUFFER ZONE

FOR SAFETY.

GOODNESS OF FIT

• RATIO OF FLAGGED TO UNFLAGGED PTS.

• IF TOO LOW, RECLUSTER AND REFIT.
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KEEPING TRACK OF GRIDS

NESTING SUGGESTS USE OF TREE STRUCTURE

(REF: KNVIH, "ART OF COMPUTER PROGRAMMING", VOL. 1)

G1,3

G1,1

Go

(

INFORMATION FOR EACH GRID

1) GRID LOCATION

2) SPATIAL AND TEMPORAL STEPSIZES
3) SIZE OF GRID
4) 3 TREE LINKS

5) PTR. TO INTERSECTING GRIDS
6) MAIN STORAGEAREA PTR.

0

POINTS TO NOTE

184

1)

2)

EASY TO HANDLE FAIRLY GENERALREGIONS.

ALL THEWORK IN SE1TING UP THE PROBLEM
IS IN SPEClFYING THE LOCATION OF THE COARSE
GRID AND ITS CONSTITUENTRECTANGLES.THE
REST IS AUTOMATIC.

EASY TO USE DIFFERENTMETHODSON DIFFERENT
GRIDS.

'_. ;i



WHAT IS h(x,y)?

WOULD LIKE TO EQUI DISTR IBUTETHE GLOBAL ERROR.

ID LINEAR THEORY SAYS IF CONTROL

(I) INITIAL ERROR
(2) BOUNDARY ERROR
(3) LOCAL TRUNCATION ERROR

AND METHOD IS STABLE FOR IBVP THENTHEMETHODCONVERGES.

(I) AND (2) CONTROLLEDBY STD. MEANS

(3) CONTROLLEDBY REFINING MESHES

USE LOCAL TRUNCATION ERROR FOR h (x, y).

REQUIREMENTS FOR LOCAL ERROR ESTIMATOR

• ACCURATELY M IM IC ERRORBEHAVIOR

• REASONABLY ACCURATEESTIMATE - NOT NEC.

• CHEAP TO COMPUTE

FLEXIBLE - EASY TO SWITCH INTEGRATORS

• THE FEWERTIME LEVELSTHE BELIER.

A BOUND

J
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POSSIBLE ESTIMATORS

DIRECT ESTIMATION OF TRUNC. ERROR

• FIND LEADING TERM

k2 h 2

(e.g. -_- Vtt t + _Vxxx )

• ESTIMATE BY DIVIDED DIFFERENCES

PROBLEMS

• HARD TO FIND LEADING TERM

• HARD TO CHANGE INTEGRATORS

• NO CHEAPERTHAN OTHERESTIMATES

1 86

LOWER ORDER ESTIMATES

(vt,vtt)
• ESTIMATESOLN.GROWTH,NTIME
• PROS -CHEAP, BEI'FERTHAN GRADIENT ESTIMATES

• CONS- ACCURATE TRENDS BUT INACCURATEESTIMATE
OF MAGN ITUDE.

GRADIENTS

• USE Ux

PROBLEMS

• EASY TO FOLL (e. g. FORCING FN. )

• NO CHEAPER THAN Vt

• GOOD ONLY FOR SHOCKS



%...-
DEFERRED CORRECTION

• USES 2 METHODS

• COMPUTE ERROR ESTIMATEAS A FUNCTION OF THE2 SOLUTIONS

PROS

MOST ACCURATE

ESTIMATES TESTED

CONS

EXTRATIME LEVELSFOR 2ND METHOD

DIFFICULT TO FIND 2ND METHODAND

ERRORRELATION

SPECIAL CASE (2h, 2k)

• 2ND METHODUSES SAME INTEGRATORWITH DOUBLETHE STEP SIZES

• ERROR Vh, k V 2h, 2k

2P+I- 1

USE OF DIFFERENTIAL EQ. TO ELIMINATE TIME DERIV.

mUSE Ut = f(u,x,t) x TO REPLACETIMEDERIVS. IN TRUNCATION ERROR

z:

PROBLEMS

• MESSY TO FIND V ttt

• VERY PROBLEMAND METHODDEPENDENT

• USEFULONLY IF EXTREMEPENALTY FOR US ING EXTRA TIME LEVELS.
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CONCLUSION

AUTOMATIC REFINED GRID GENERATION

• ARBITRARY ORIENTATION OF RECTANGLES

• LOW OVERHEADOF GRID REPRESENTATION

• REFINEMENTSBASED ON (2h, 2k) ESTIMATES
OF LOCAL TRUNCATION ERROR
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GENERATIONS OF ORTHOGONAL SURFACE COORDINATES*

F. G. Blottner and J. B. Moreno

Sandia National Laborat °ries%

Albuquerque, NM 87185

An orthogonal surface-oriented

coordinate system has been developed

for three-dimensional flows where the

computational domain normal to the

surface is small. With this restric-

tion the coordinate system requires

orthogonality only at the body surface.

The coordinate system is as follows:

one coordinate measures distance

normal to the surface while the other

two coordinates are defined by an

orthogonal mesh on the surface. One

coordinate is formed by the inter-

section of the body surface and the

meridional planes as illustrated in

Figure 1 and gives the e = constant

lines. The other coordinate _, which

is nondimensionalized with a character-

istic length of the body geometry,

measures the distance along the body

surface when 9 = 0. This coordinate

system has been utilized in boundary

layer flows _'_ and for the hypersonic

viscous shock-layer pro blem-_

Two methods have been developed

for generating the surface coordinates.

The first method uses the orthogonal

condition in finite-difference form to

determine the surface coordinates with

the metric coefficients and curvature

of the coordinate lines calculated

numerically. The second method obtains

analytical expressions for the metric

coefficients and for the curvature of

the coordinate lines. Both methods

assume the body surface is defined in

terms of a cylindrical coordinate

system where r = r(x,_). The surface

inclinations %1 and _2 as illustrated

in Figure 2 are determined from

()3r and r tan ¢2 = -
tan ¢i = _-x _ x

and are known quantities.

PLANE OF

SYMMETRY )_'_ 1_0..,,.# r X

l Y __j
BODY

I .dIlrll!JllI/..'_'/,_// \ /_SURFACE

IIiI IY "'-J

<'_Sl/_AG.ATmN

POINT Z

Fiqure i. surface Coordinate System.

Figure 2. Angles _i and ¢2 Defined_in

the Cylindrical Coordznate

Sy s tem.

* This work was supported by the U. S. Department of Energy under contract

DE-AC04-76-DP00789.

% A U. S. Department of Energy Facility.

_RIGP,TA_ PA.:E IS

OF POOR "] 4--,",r
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In the numerical method, 1'2 the

orthogonal condition for the surface

coordinates results in the relation

dx = I d8 (along _ = constant)

where

I = r tan @i tan %2/(I + tan 2 ¢I )

The equation of the surface provides
the relation

dr = tan _i dx - r tan _2 de

The surface coordinate _ is determined

numerically from the foregoing

equations by assuming a value of dO

and marching away from 8 = 0 to deter-

mine the values of x and r. In

addition the metric coefficients are

determined numerically from

h_ = ds/d_

h e = dt/d_

whe re

= 8/2_

ds 2 = dx 2 + dr 2

dt 2 = ds 2 + r2d0 2

The curvature of the coordinate lines
is determined from

K_
1 _h_ for _ = constant

h_h _

K 1 _h for _ = constant

with the derivatives replaced with mid-

point difference relations.

In the second method 3, an analyt-

ical expression is developed for h
as follows:

h = 2zr (i + cos2_l tan2_2)I/2

A differential equation results for

the other metric coefficient as follows:

1 dh_

h$ d,_- = 2nr cos2%l tan #2 (_II
_x l0

This equation is integrated along

= constant lines on the surface

from the initial condition h_ =
1 at 0 = 0. The substitution of

foregoing equations into the

equations for K_ and K give

analytical expr_ssions_for the

curvature of the coordinate lines.

In evaluating these relations,

the variations of x and 0 along

the _ = constant coordinate must
be known.

A sphere at angle of attack

as shown in Figure 3 is used

to illustrate the computation of

the surface coordinates with both

methods. The surface coordinates

on the sphere as viewed from the

side are illustrated in Figure 4.

The _ = constant lines result from

planes intersecting the sphere

with these planes passing through

the line which is normal to the

plane of symmetry and is located

at

x/a = q 1 - (b/a) 2

y/a = (x/a)2/(b/a)

The metric coefficients for this

coordinate system are given in

Figures 5 and 6 with good agree-

ment between the two methods. The

curvature of the coordinate lines

is given in Figures 7 and 8. It

is noteworthy that K_ is independent

of _. The differences evidenced

in Figure 8 can be partially

attributed to the numerical evalua-

tion of K being at one-half mesh
S
pace locations away from the

indicated.

The numerical method of gene-

rating the orthogonal surface

coordinates has been applied to

ellipsoids, paraboloids and elliptic-

paraboloids. The coordinates on an

ellipsoid are illustrated in Figure 9.

The second method or analytical

approach has only been developed for

the sphere.

] 9O
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Figure 7. Geodesic Curvature of

Lines of Constant 8.

[ 12_]

i
I

-0.2 0 0.2 0.4 0.6 0,8 1.0 1.2 1.4 1.6

x/b

Figure 9. Surface Coordinates on

Ellipsoid (b/a = 1/4)

o o o o o o o o o

o o o o O O _ _ o

Figure 8. Geodesic Curvature of

Lines of Constant _.
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An Adaptive Computation Mesh for the Solution of Singular

Perturbation Problems

J. U. Brackbill and J. Saltzman

Courant Institute of Mathematical Sciences

An adaptive mesh for singular perturbation problems in two

and three dimensions is reported. The adaptive mesh is generated

by the solution of potential equations which are derived by

minimizing the integral I, written,

2}]dV (i)

I = I[{(V_)2+(_q)2}+Iv{WJ}+lo{(V_'V_)

D

where x($,_),Y(_,q) represent a mapping from a parameter space

P, 0 < _ < I , 0 < q < J , where w(x,y) > 0 is given, Iv and 1 o

are nonnegative constants, and J, the Jacobian, is written,

_ (x,y) (2)
J =

In the usual manner, the mesh is constructed by joining points

in (x,y) corresponding to integer values of _ and n by straight

lines to form a net of arbitrarily shaped, quadrilateral cells

(i).

The variational formulation is equivalent to Winslow's

method (2) when 1 o and 1V are zero. The Euler equations are

those given by Winslow, and their solution maximizes the smooth-

ness of the mapping. The additional terms modify other attributes

of the mapping in a similar way. When 1o > 0 , the mapping is

modified to make it mole orthogonal. When 1V > 0 , the mapping

is modified to make wJZmore nearly constant over the mesh. By

choosing w(x,y) appropriately, and with lV , Io > 0 , the zone

size variation and skewness can be controlled.
il \

In singular perturbation problems, control of zone size

variation can affect the effort required to obtain accurate,

numerical solutions of finite difference equations. Consider

a simple, difference approximation,

fi+l - fi-i (3)

xi+ 1 - xi_ 1

where i corresponds to _ , 0 < i < I.

the truncation error is written, -

In the usual manner,
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1 d2f 1 d3f 2
e - 2 dx 2 x_ + 6 dx 3 (x_) +

When f is sufficiently smooth, _ is least when x_ = 0.when f is given, for example,

(4)

Howe ve r,

f = (i + exp(x/6))-i
, (5)

for which dnf/dxn = 0(6 -n) is not finite for 6 = 0, the error

e is bounded only if (x_/6) < 1 in the interval -6 < x < 6.

an equa±±y spaced mesh with x_ sufficiently small satisfies this

requirement, but one with x_ _ 6 only when -6 < x < 6 , and

larger everywhere else satisfies it with fewer mesh points.
With w (x) given by,

I 1 df Iw(x) = f dx ' (6)

minimizing the integral in Eq. 1 causes the mesh spacing to
approach that given by the equation,

I 1 df_-_ x_ = const. , (7)

as 1V increases. As a result, where w is largest the mesh
spaclng is smallest, and vice versa.

Numerical results for a singular perturbation problem in

two dimensions are shown in the accompanying figures. A steady
solution to the equation,

_-_ + V- (u_) = <V2_ , (8)

is sought for small values of _ with u given. Such solutions

are obtained when the diffusion and cSnvective transport are in
balance everywhere,

u = . (9)

When u is given by,

1

u = - -- (l+exp((r-ro)/<))-I

]94
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the convective transport term is significantly different from

zero in an annulus of width < with radius r o. When w(r,8) is

given by,

w(r,e) = u'u
(ii)

the zones of the computation mesh are made smaller where I_I

is largest as shown in Fig. i.

In Fig. 2, the error in the numerical solution of Eq. 8

on the adaptive mesh as measured by the maximum norm,

<! I= Max lu - 6
emax i, j ~

(12)

is compared with the error on a fixed rectilinear mesh. The

accuracy obtained by adapting the mesh can be obtained, in

most cases, only by a threefold refinement of the regular mesh

in each coordinate direction.

The adaptive mesh has been used in calculations of resistive

magnetohydrodynamic flow in two dimensions with the weight

function,

w = (V x B/B)

The results indicate a significant increase in the maximum,

representable magnetic Reynolds number. The adaptive mesh

can be applied easily to other fluid flow problems with the

appropriate choice of weight function.

The use of the adaptive mesh in time dependent flow problems

will be discussed, and results will be presented.

1. Joe F. Thompson, Frank C. Thames and C. Wayne Mastin,

J. Comp. Phys. 15, 299 (1974).

2. A. M. Winslow, J. Comp. Phys. l, 149 (1966).
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Figure I.- An adaptive mesh with r o equal to 1/4 and

K equal to 1/40 the mesh width. The cells are

concentrated in the region of maximum gradient.

60%

(v

u

•i 20%

(D

f£xed mesh

407.

t ] ) 1 __LL__ 1

(D

(9

1/25 1/20

0.0 0.i 0.2 0.3 0.4 0.5

Average zone size( in inverse mesh widths)

Figure 2.- Similar scaling of the maximum relative error

withzone size obtained for both adaptive meshes (like

the one shown in Fig. I) and fixed meshes, but many

fewer zones are required with an adaptive mesh.

V



A N_'I COORDINATE TRANSFORMATION FOR TURBULENT

BOUNDARY LAYER FLOWS

J. E. Carter, D. E. Edwards, and _. J. Wer!e

United Technologies Research Center

East Hartford, Connect_cu_

ABSTRACT

A new self adaptive coordinate transformation for the finite-difference

solution of turbulent boundary-layer flows is presented which permits a uniform

mesh to be used in the computational coordinate which extends across the layer.

This coordinate transformation uses the local value of the skin friction coefficient

to scale the thickness of the wall layer region, and the local maximum value of

turbulent viscosity to scale the boundary-layer thickness. Results are presented

for two dimensional boundary layers in both positive and negative pressure gradients

and comparisons are made with experiments/ data and conventional variable-grid

results for low-speed turbulent bo_mdary-layers. The cases chosen illustrate

the capability of this new transformation to capture the boundary layer growth

over the full extent of laminar, transitJonal_ and turbulent flow with no grid

adjustment as well as its ability to consistently enlarge the wall layer region

for accurate shear stress representation. In addition, preliminary results of

mesh refinement studies using the new coordinate transformation are presented.

............ 7S

,m:,"POOP, QUAI,FFY
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Figure i. Introduction

Current procedures which are used to generate the mesh across a turbu/ent boundary

layer require the specification of several mesh parameters which are generally difficult

to relate to the length scales of the flow itself. In addition, these length scales

vary as the solution evolves downstream thereby resulting in a mesh which although

"optimum" in one region, may be inappropriate in another. The objective of the present

investigation is to develop a procedure which sSmplifies the specification of the

grid point d_stribution across the turbulent boundary layer. It is desired to have

this procedure properly account for the growth of the wall layer as well as the overall

boundary-layer thickness. Since most flows are initially laminar at the start of the

boundary layer and then are followed by transition to turbulent flows then this

procedure should be uniformly applicable to laminar, transitional, and turbulent flows.

The approach taken is to develop an adaptive grid technique based on known ana/ytical

properties of boundary layer flows. This approach results in a coordinate transformation

which is based entirely on fluid dynamic concepts.

Objective

• Develop a procedure which:

• Simplifies specification of grid point
distribution across turbulent boundary layer

• Properly accounts for wall layer and boundary
layer thicknesses

Approach

• Adaptive grid technique based on known
analytical properties of boundary layer flows
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Figure 2. Grid Requirements for Turbulent Boundary Layers

It is well known that turbulent boundary layers are characterized by two

transverse length scales, the boundary layer thickness and the wall layer thickness.

These two length scales generally are quite different in magnitude thereby ms_king the

'analysis of turbulent layers more complicated than laminar boundary layers where

generally only one length scale is present, the boundary layer thickness. In addition

the wall layer and boundary layer thicknesses vary in the stream direction depending

upon the pressure grm!ient, wall boundary conditions, etc. In laminar flow it has

been shown that when the boundary layer equations are expressed in terms of the Levy-

Lees variables, the streamwise growth of the boundary layer is significantly reduced

thereby simplifying the numerical solution of the governing equations. Most turbulent

analyses also use the Levy-Lees variables but since these variables do not properly

capture the boundary layer thickness it is necessary to monitorthe numerical solution

and add points in the outer region to accommodate the boundary layer growth. Also,

in order to provide adequate resolution of the wall and ws/_e region and simultameously

use as few grid points as possible, practically all numerical appros2hes for turbulent

boundary layers use a fine mesh near the wall and a coarser mesh in the outer region

as shown here. There are two difficulties with this approach: i) the initis/ choice

of the mesh distribution, and 2) the adjustment of this mesh as the wall and boundary

layer thicknesses vary downstream. A new coordinate transformation was devised to

simultaneously capture the boundary layer growth and automatically scale the inner

wall layer region thereby allowing a uniform step to be used in the transformed

coordinate, N. The resulting turbulent profile, schematically shown here, has the

appearance of a laminar profile when plotted in terms of N.

Laminar Levy Lees

• Monitor edge

growth

,, Variable grid to
resolve wall layer

Coordinate
transformation

• Growth capture

• Automatic wall

layer scaling

7f

N

/J.

_// .f / / /

U

Fjjjjjj
U

e

N

.... :-Boundary-

• layer edge - -

'j J.
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Figure 3. Capture of Turbulent Boundary Layer Growth

The development _f the coordinate transformation begins by first generalizing

the Levy-Lees transformation for laminar flow to turbulent flow by using a reference

turbulent viscosity level to replace the laminar edge v_scosity in these transformed

variables. For la_nar flows the usual Levy-Lees transformation converts the

equations fr_m physical variables to similarity variables such that even when the

flow is not self-similar the boundary layer edge is essentia]_ly constant in the

transformed normal coordinate. In the l_mJnar ease the normalized molecular viscosity

coefficient is 0(i) in the outer region of the boundary layer. For the turbulent case

this transformation is modified to normalize the turbulent viscosity coefficient to

O(i) in the outer region but is done in such a manner that the form of the equation

is unchanged from the laminar set. Thus in these transformed variables, in the outer

region, the solution for laminar and turbulent flow should be approximately the same

since the outer boundary condition (F=I) is the ssme for both. Therefore, since

these variables capture the boundary layer growth in laminar flow, the same growth

capture should occur in the turbulent case. The turbulent Levy Lees transformation

is a generalization of that used by Schlichting in his Ph.D. thesis in 1930 to transform

the turbulent momentum equation for jets and wakes into a "laminar-like" form thereby

permitting the laminar similarity solution to be used for a turbulent flow. The

new turbulent Levy Lees transformation can be used with any turbulence model provided

that a representative turbulent viscosity level can be identified. In the present

work the two-layer algebraic eddy viscosity model of Cebeei and Smith was used, in

which the reference turbulent viscosity is that for the outer la_rer. This value

varies only with the distance along the surface sir_e an intenTLittency function was
not used at the boundary layer edge.

_O s_'= Pe_'teUeds

Eref =0

Ere f f'O

•r/=_ _on P

Laminar Levy Lees transformation

New turbulent Levy Lees transformation

F = u
Ue

Continuity:

Momentum:

2_
V=

PeFte ue ( pu +F s) ,8=2 Ue d_

2 F¢+F +v =o

2 FF¢.vF 

where

=_(I-F 2) +r P/¢' ]Lpe/z te F_
9
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_ } Figure _. Composite Coordinate Transformation

The use of the turbulent Levy Lees transformation avoids the need to continuously

add or subtract grid points at the edge of the turb1_ent bolmdary layer due to

boundary layer growth or decay. However, a variable grid distribution is still

required, in fact now even more so, to adequately resolve the ws_ll layer thickness

since it has been correspondingly reduced along with the boundary-layer thickness.

Clearly, an inner region transformation is needed to enlarge_ in the computations/

coordinate, the high gradient wall region. Fortunately, the ans/ytical behavior of

the turbulent boundary layer profile is known in the wall layer region and this

information can be used as the basis for an inner region (wall layer) transformation.

It has been established numerous times both analytically and experimentally over the

past 40 years that the velocity varies w-ith the logarithm of the distance normal to

the wall in the wall region. This relationship is not valid in the immediate vicinity

of the wa/l since it is singular and must be replaced with the 18minar sublayer profile

where the velocity varies linearly with the distance normal to the wall. Hence a

logarithmic coordinate transformation could not be used if we want to solve the

equations all the way to the wall_ which is desired in most boundary-layer analyses.

In a recent paper_ Whitfield presented a new analytical expression for the velocity

profile in the wall region which also has the proper analytical behavior in the

laminar sublayer. This analytical expression is used in the present work in the wall

or inner region such that a constant increment in the transformed coordinate results

Jn a constant increment in velocity. With the inner region coordinate transformation

established it is now necessary to specify a suitable transformation for the outer

or wake region. The outer coordinate transformation is motivated by the observation

th&t with the turbulent Levy Lees transformation discussed in figure 3, the boundary

layer edge is fixed and the governing equations closely resemble the laminar equations

in the outer region. Hence the outer transformation is deduced from a function which

closely fits the Blasius solution. Whitfield found that this inunction closely fits

turbulent data in the outer region which supports the idea that in this region the

laminar and turbulent solutions resemble each other. A composite transformation is

established by combining the inner and outer transformations employing concepts from

the method of matched asymptotic expansions. The fins/ result is that the semi-

infinite physical space o_y5_ is mapped into a unit interv8-10_N_! in the computational

coordinate N, and that the transformation used is based completely on fluid dynamic

concepts to assure a universal applicability of the method. A sketch of the inner,

outer, and composite functions is shown to iliuStrate their relative magnitudes.

Inner region:

• Analytical solution by Whitfleld

• Correct in sublayer, u + = y+

Outer region:

t =No~_e ° tonh'"2 d (_ +_o) 2

• Normalized viscosity implies
outer region is "laminar-like"

• Good fit to Blasius solution

• Found by Whitfield to match
experimental data

N

Composite:

N c = N i+ No- Ni/o

• Matching condition Nil 0 = No/i

• Solve for %

. ,, -,,,_ORIGINAL P ...... IS

,. T._T v'"_OF POOR 0._,_...._ /"
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Figure 5. Implement Coordinate Transformation

The composite coordinate transformation presented in figure 4 is incorporated

into the boundary-layer equations expressed in terms of the turbulent Levy Lees

variables which were discussed in figure 3. The transformed equations are obtained

in a straightforward manner and are not substantially different from those in figure 3

other than the explicit dependence of the term DN/_. These equations are solved

with a standard implicit finite-difference scheme in which a uniform mesh is used

in the normal direction. The use of the coordinate transformation results in less

than a 10% increase in computer time over that used by our UTRC computer code which

was recently developed using the variable grid finite difference scheme developed

by Blottner. This code has been used in the present work to provide calculations for

comparison purposes. This new coordinate transformation is an adaptive grid procedure

since it relies on two quantities, the local skin friction and the local reference

viscosity to complete the specification of the composite coordinate at each stream-

wise location. In the results presented here these quantities were obtained from

the solution at the previous station since a non-iterative scheme was used. This

adaptive grid procedure is applicable to laminar flows since the wall layer region

is nonexistent (hence Ni = O) and only the outer transformation is used. In transitional

flows the wall layer region is initiated at the start of transition and thus allows

for the natural development of the wall region as the flow evolves from a laminar

to a turbulent boundary layer.

• Finite difference solution of equations in _', N coordinates

• Adaptive grid -- Cfe and (I +_')ref depend on local solution

Applies to laminar, transitional, and turbulent flow

Laminar -- set Ni = 0

Transitional -- inclusion of inner region initiated
at start of transition

Turbulent -- composite transformation
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Figure 6. Skin Friction Distribution - Flat Plate

This figure shows a comparison of the skin friction distribution obtained from

calculations in which the composjte coordinate transformation (adaptive grid) and the

variable grid (geometric progression) techniques wer@ used. Both predictions agree

well with the experimental data of WJeghardt. In the present case iO1 points were

used across the layer and there is no plottable difference in the results. Reduction

in the number of points from IO1 to 21 resulted in essentially the same solution

using the adaptive grid; the same reduction for the variable grid scheme resulted in

a slightly different solution as shown here. The arrows indicate the locations at

which profiles from the different approaches will be compared.

0.006 I

0.005
Adaptive grid, N = 101,21Variable grid, N = 101

------ Variable grid, N = 21

!-_. o Exp. data (Wieghardt)
0.004 p "_ Reoolm = 2.2 x 106

Cfe 0.003 , __..__
H __ uoo=33mls

0.002 [

0.001 t

I
0_) 1 4 5

L I
2 3
S, meter

_J
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Figure 7. Displacement Thickness Distribution - Flat Plate

Shown here is a comparison of the displacement thickness distributions from the

adaptive grid scheme versus that measured experimentally. The agreement is good and

the solution is shown to change only a few percent when the grid is reduced. Similar

changes were found to occur in the variable grid scheme when the same grid reduction

was made. Detailed grid studies are presently underway in order to compare the

relative truncation errors of the adaptive grid scheme and the variable grid scheme.

0
0 1

Adaptive grid

•"--- N =101 points

---- N= 21 points

o Exp. data (Wieghardt)

2 3 4 5
s, meter
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Figure 8. Velocity Profiles in Laminar Levy Lees Variables

In the next several figures flat plate velocity profiles at the locations

previously indicated in figure 6 will be shown in terms of the normal coordinate as

given by the laminar Levy Lees transformation, the turbulent Levy Lees transformatiGn_

and the composite coordinate transformation. The present figure clearly shows the

two-layer structure of the turbulent boundary layer as well as the significant

boundary layer growth which occurs in this variable. Use of the laminar Levy Lees

transformation for turbulent flows is not significantly different than working in the

physical or untransformed coordinate. Also plotted is the Blasius solution which

is the laminar self-similar solution for a flat plate. Note that the Blasius solution

has a much smaller value of _e at the edge of the boundary layer than the turbulent

profiles despite the higher skin friction (slope at wall) in the turbulent case.

ulu e

0
0

I
10

!
20

s=O.17m

___ s =4.6m
Blasius

I I
30 40 50
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Figure 9. Velocity Profiles in TurbulentLevyLeesVariable

This figure showsthe sameprofiles in the newturbulent Levy Lees variable

8J1d indicates that the turbulent bo_idary-layer thickness has been preserved in this

new variable and that it is nearly the same value as that of the Blasius profile. The

bar over the _-coordinate is used to distinguish between the turbulent Levy Lees

variable and the laminar Levy Lees variable as discussed in figure 3. Both variables

have the same form; it is only the interpretation of the _-variable contained in the

-variable which distinguishes the two transformations. Despite the capture of the

turbu/ent boundary layer growth, it is seen in this figure that the high gradient

wall region still persists which requires a variable grid for adequate resolution.

1.0 --

U/Ue 0.6 _//

0.4

/ .... s=O..17m
/ ----- s =4.6 m

0.2 / ------ BlasJus

/
0 I ! I !

0 1 2 3 4 5

v
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Figure I0. Growth of Boundary Layer Thickness - Flat Plate

This figure shows a comparison between the streamwise variation of the boundary

layer edge as deduced in the isminar Levy Lees variable versus that obtained in

_erms of the turbulent Levy Lees variable• The ability of the turbulent Levy Lees

variable to capture the turbulent boundary layer growth is clearly seen here.

_e

4O

30

20

10

0

/ ------ New turbulent

Levy Lees

0

,ram unuil _ _ _nuummm,.nmw, muuwi _ _ _nl ira. _ ulml_ mlUO

i I L I
1 2 3 4

s, meter

,7 ¸¸
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Fi_are ii. Velocity Profiles in NewCompositeCoordinate

This figure presentsthe sameprofiles shownpreviously nowplotted in termsof
the newcompositecoordinate. It is seenthat this transformationresults in an
enlargementof the wall region, and since the boundary layer edge is captured by the

turbulent Levy Lees transformation_ the computed turbulent profiles show the same

0(i) variation across the layer as the laminar profile thereby permitting a uniform

mesh to be used. It is seen that in terms of this new composite coordinate the

turbulent profiles change only slightly over a flat plate distance of 4.5M. These

changes are greater in the outer region than they are in the inner which is probably

due to the more approximate outer coordinate transformation as compared to the use of

Whitfield's analytical solution for the inner trsnsformation.

ulu e

/

0
0 0.2 0.4

--- s =0.17m
---- s =4.6m
---- Blasius

I !
0.6 0.8

N

I

1.0
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Figure 12. Edge Velocity Distribution

The previous example was a flat plate in which the imposed streamwise pressure

gradient is zero. It is well known that boundary layer flows are strongly influenced

by the pressure gradient and thus as a test of the new technique presented herein the

edge velocity shown in this figure was imposed as a streamwise boundary condition

on the boundary layer equations. This distribution was measured by Schubauer and

Klebanoff for the airfoil shown here and provides a good test case for the present

work since both regions of favorable and adverse pressure gradient are present.

.-o- Exp. data (Schubauer
and Klebanoff)

0 l I I
0 4 8 12 16 20 24 28

S, ft

._f Measurement surface

(Note. 1 fl = 0.3048m)
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Figure 13. Skin Friction Distribution - Airfoil

Comparison of the computed skin friction with that measured by Schubauer and

_lebanoff is shown here. Excellent agreement is obtained except in the aft strong

- adverse pressure gradient region where other investigators have concluded that there

are three dimensional effects which of course is outside the scope of the present

analysis. Comparison of the adaptive grid results with those obtained with the

variable grid show that both solutions are the same except in the adverse pressure

gradient region where the adaptive grid scheme shows better agreement with the data.

Both cases were computed with i01 points across the layer. In the present case the

computation does not extend to the separation point so as a further test of the new

scheme an analytically imposed edge velocity was prescribed such that separation was

encountered. No difficulties were encountered in this case and both the adaptive

grid and variable grid schemes yielded nearly the same result.

°"°°6I! !
II .... Adaptive grid

_ Variable grid
II o Exp. data (Schubauerand Klebanoff)

Reoo Ift = 9.8 x 105

0.004 _0 ftlsec

Cfe

0.002 _ - _o

oo
0 t i I t I%

0 4 8 12 16 20 24 21

s, ft
(Note: 1 fl = 0.3048 m)

ORIGI]TAL • __ '-,

OF POOR ";" " _?<:"
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Figure lb. Growth of Boundary Ieyer Thickness - Airfoil

This figure shows that the boundary layer edge is captured with the new turbulent

Levy Lees transformation for both positive and negative pressure gradients as was

shown in figure i0 for zero pressure gradient. A slight increase in the boundary-

layer edge is observed with the turbulent Levy Lees transformation in the adverse

pressure gradient region; however, this growth is negligible compared to that which

occurs in the usual laminar Levy Lees variable.

7°I i
---- Laminar Levy Lees

60 --- New turbulent Levy Lees

5O

40

_/e

30

20

10

0

(Note: 1 ft = 0.3048m)

mmmm m

12 16 20 24
s, tt

28

i ::
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F_gure 15. Conclusions

In conclusion, a new adaptive grid procedure has been presented which automatically

captures the boundary layer thickness and simultaneously enlarges the wall layer

region through the use of a composite coordinate transformation. This new procedure

demonstrates the benefit of using fluid dynamic concepts in mesh generation for

numerical solutions since scaling problems and singular regions are properly accounted

for. The adaptive grid scheme presented here is simpler to use than a variable grid

scheme since now only the total number of desired points needs to be specified by

the user. In addition, this adaptive grid procedure has been demonstrated to be

applicable to laminar, transitional, and turbulent flows.

Adaptive grid procedure automatically captures boundary.
and wall-layer thicknesses

New procedure demonstrates benefit of incorporating
known analytical properties of the flow into mesh
generation

Adaptive grid procedure easier to use than variable grid
scheme since only total number of points must be specified

Adaptive grid procedure applies uniformly to laminar,
transitional, and turbulent flows
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Generation of Orthogonal Boundary-Fitted

Coordinate Systems

Roderick M. Coleman

Computation, Mathematics, and Logistics Department

David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland 20084

ABSTRACT

A method is presented for computing orthogonal boundary-fitted

coordinate systems for geometries with coordinate distributions specified

on all boundaries. The system which has found most extensive use in

generating boundary-fitted grids is made up of the Poisson equations

= P
_xx + _yy (i)

qxx + = Qqyy

The functions P and Q provide a means for controlling the spacing and

density of grid lines in the coordinate system. Since all calculations are

done in the computational plane, the dependent and independent variables in

Equation (i) are interchanged, giving the usual transformed equations

_ + J2(px_ + Qxq) = 0ax_ 2Bxsq + Yxqn (2)

ay_ - 2By_q + Yyq_ + j2(py5 + Qyq) = 0

where

= x 2 + 2 B = x_x n + Y_Yqq Yn

2 + y_ j =y = xE xCY n - xnY _

The condition for orthogonality, i.e., _ = constant lines perpendicular to

q = constant lines, is B = 0, because

B = 0 --# x¢/Y_ = -Yn/Xq

which is equivalent to

I = -YxlI/Yx q=constant _ =constant

As a generating system based entirely on _, we consider

B_ = Bn = 0 (3)

which can have an orthogonal solution only when _ = 0 at the corners of the

computational region. An iterative solution of the generating system given

in Equation (3) is applied successfully to several geometries. While questions

remain concerning the existence and uniqueness of orthogonal systems, the

generating method presented here adds to the available, useful techniques for

constructing these systems.
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Figure i provides a comparisonof two grids generatedfor a square
region with nonuniformboundarycoordinate spacing in both vertical and
horizontal directions. Thenonorthogonalmeshshownin Fig. la was
generatedusing the Poissonsystemgiven by Equation (2) with P_Q_O.

Equation (2) was replaced with central difference formulaeand the resulting
systemwassolved by successiveoverrelaxation (SOR). Theorthogonalmesh
shownin Fig. ib wasobtained using Equation (3) as a generating system.
Equation (3) wasexpandedandeachderivative was replacedwith the

appropriate central difference formula. Again, the resulting systemwas
solved by SORiteration.

21 4
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F Two 21 x 21 girds generated for a simply-connected region with

one convex boundary are shown in Figure 2. Fig. 2a shows a nonorthogonal

coordinate system generated by Equation (2) with P E Q _ 0 (a Laplace

system); Fig. 2b shows a coordinate system generated by Equation (3).

Note the orthogonality of the coordinate lines intersecting the curved

upper boundary in Fig. 2 and the resultant bending of these lines in the

interior.

:"7::

i

7

_r

(a)

I

I

EL

1-

li
!

(b) _.

Figure 2
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Figure 3 shows a region similar to that of Fig. 2 with a concave

rather than convex curved boundary. As before, Fig. 3a shows a Laplace-

generated grid and Fig. 3b shows a B-generated grid obtained using

Equation (3). The orthogonal mesh must have rather fine spacing near

the concave upper boundary to accommodate the curvature. To verify that

the fine mesh spacing in Fig. 3b is due to the geometry and not to a

singularity in the transformation , we have refined the mesh as seen in

the next figure.

]J

E

b+--+

la)

L_t
±
Ib)

ii

Figure 3
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Figure 4 compares two different grids, one coarse with 1681 points

and the other fine with 6561 points, generated for the concave region.

The fact that corresponding grid lines are in about the same position in

both meshes confirms that the coarse discretization yields a good

approximate solution to the exact problem. A further confirmation comes

from consideration of the Jacobian at the midpoint of the upper boundary.

The value of the Jacobian computed on the coarse mesh is nonzero and

agrees very well with the value computed on the fine mesh. There is no

indication of a zero Jacobian anywhere in the region.

L

I
I

I

I
I
I
I
I

L -- -- --_

Figure 4

I
t
[

I
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To demonstrate some of the problems that can arise, we attempted

to generate an orthogonal mesh on a region similar to the previous one

but with greater curvature of the concave boundary. The grid shown in

Fig. 5a was generated by a Laplace system and the unacceptable grid in

Fig. 5b was generated by the system of Equation (3). To verify that a

mesh with crossing lines can also be produced by a Poisson system, we

computed directly the forcing functions P and Q using Equation (2) with

x and y as given in Fig. 5b. We then solved Equation (2) iteratively for

x and y using this P and Q, and regenerated the grid of Fig. 5b.
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As the final example, we considered a doubly-connected region

bounded by concentric circles as shown in Fig. 6. Since thisregion is

symmetric with respect to any line passing through the center, each grid

was generated for half the region and reflected in the line of symmetry.

The symmetry line was treated as a boundary with fixed coordinate

distribution, thus assuring that B = 0 at the corners of the computational

region. The spacing on the outer boundary, but not on the inner boundary,

was uniform. Had the spacing on both boundaries been uniform, the grid

produced by the Laplace generating system (Fig. 6a) would have been the

usual polar coordinate system which is orthogonal. In Figs. 6a and 6b, the

line of symmetry was taken as a horizontal line through the center of the

figure. The mesh of 6a was used as an initial guess for the iterative

procedure used to obtain the mesh of 6b.

{b}

Figure 6
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In Fig. 7, we show a B-generated grid computedfor the samedoubly-
connected region used in the previous figure. As before, the meshof
Fig. 6a was used for the initial guess, but in this case the line of

symmetrywas taken as a vertical line through the center. Interestingly,
the two orthogonal grids generated for the samephysical region (Figs. 6b
and 7) are quite dissimilar because different points were held constant
after the sameinitial guess.

Figure 7
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NONLINEAR GRID ERROR EFFECTS ON NUMERICAL

SOLUTIO_ OF PARTIAL DIFFERENTIAL EQUATIONS*

S. K. Dey

Department of Mathematics
Eastern Illinois University

Charleston, Illinois 61920

Abstract

Finite difference solution of nonlinear partial differential

equations requires discretizations and consequently grid errors

are generated. These erro_:s strongly affect stability and con--

vergence proper£_e_; of difference models. Previously such errors

were analyzed by lineariz_g the difference equations for solu-

tions. In this article properties of mapping_ of decadence [1,2]

were used to analyze nonlinear instabilities. Such an analysis

is directly affected by initial/boundary conditions. An algorithm

has been developed, applied to nonlinear Burgers' equation [3,4]

and verified computationally. A preliminary test shows that

Navier--Stokes' equation may be treated similarly.

*This work has been supported by Minna-James-Heineman-Stiftung

Foundation of West Germany and by Eastern Illinois University.

The work was primarily done at von Karman Institute for Fluid

Dynamics, Rhode-ST-Genese, Belgium.
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le The Objective.

Let us consider a nonlinear partial differential equation

_u/_t = L(u)
(1.1)

where L is a one-dimensional differential operator in x. Let the

domain of integration be [a,b] X [0,-). Equation (i.i) is subject

to certain initial/boundary conditions and it is assumed that the

problem is mathematically well-posed.

An explicit finite difference analog of (i.I) is

U n = F(U n-l)
(1.2)

= 1 n • U n T RI =where, U n (U U2 "" i ) 6 D _ , (R I the real I-dimensienal

space), U n = U(xi,tn) = the net function corresponding to u n whichl
l

is the true value of u at (x ,t ).
1 n

An implicit finite difference analog of (I.i) is:

G(un) = un-l" (1.3)

Also, F: D C R I _ D and so is G. It is assumed that the trunca-

tion errors are sma_l and their effects are negligible.

Grid error is defined by

en = un - un" (1.4)

Stability is guaranteed iff V n,IIenll < K, where K is positive and

arbitrarily chosen.

In this article an attempt will be made to see how one can

obtain, V e I £ R I

V

lim Ilenll = 0
n_- (i. 5)
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for given _x (mesh size) and At (time step).

Obviously (1.5) guarantees stability. It also implies con-

vergence for steady state solution.

2. Mathematical Preliminaries.

Let, V n, z n g R I andF

n n-i (2.1)
z = A z .

n

Clearly, lim z n = 0 iff

n-_

lira A n An_ 1 ... A 1 = _" (2.2)

]%-_ o0

Now (2.2) is true if there exists a particular norm such that

¥n > N

(These are discussed in details in [2] .) Under these conditions

(2 I) is said to describe a motion of decadence and A is called• n

a D-matrix.

If instead of (2.1) the motion is given by

n n-1 (2.4)
A z = z
n

-I is a D-matrix which is true
it is a motion of decadance iff A n

if

for some particular norm and V n > N.

It may be proved:

Theorem: 1 If A n is _ lower triangular _atrix and

P(An ) < e < I, A is a D-matrix• (P(An) = Spectral Radius of A
-- n

.)
Ii
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Theorem: 2 If A n is a tridiagonal matrix and (i) for i _ j,

la n a n
ljl < I ii I and (ii) la n _ (a n n n

li i,i-i ai-l,i/ai-l,i_l)I > 1 I n, alll > i,

A -I is a D-matrix The same is true if A n is a bidiagonal matrixn

with nonnull elements on the main diagonal.

3. At_'.al_q!s of Discretization Errors.

Let us consider (1.2). Let

F(un-l) - F(U n-l) = A e n-I
n

Obviously, if a n is an element of A
13 n S

the grid error equation for (1.2) is:

n a_a = (un,Un) .
13 13

e n = A e n-l.
n

llence, (1.5) is true if A
n

If we express,

is a D-matrix.

(3.1)

Then

(3.2)

G(u n) - G(U n) = A e n
n (3.3)

then for (1.3), the equation (1.5) is true if A -I
is a D-matrix.

It may be seen that the effects of truncation error are total-

I_ neglected in this discussion. Such effects were discussed in

[2] .

Thus, for an explicit finite difference equation, grid error

effects are damped out if A in (3.2) is a D-matrix; and for an
n

implicit finite difference equation, the same is true if A in
n

(3.3) Js such that A -I exists and is a D-matrix
n •

e

Algorithm for Stabili_A____.

It is well known that for any square matrix A (I X I)
n
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I% n

max laijl <-IIA II <- I.max laij I (4.1)
n ijij

for certain natural norms. Thus, for an explicit equation like

(1.2), (1.5) is true if

I.max lan I < _ < i. (4.2)
ij -

ij

If in case A is a lower triangular matrix, Theorem: 1 may be
n

applied.

. is a tridi--
For an implicit equation of the form (I 3), if A n

agonal matrix, gr_d error effects may be studied by using Theorem:

(or A -]) to be a D-matrix may be
2. A general analysis for A n n

found in [5].

1 ;2_/_-1___eat ion-

Let us consider the invisci_ Burgers' equation:

u t + (1/2) (u 2)x = 0.
(5.1)

Let the initial conditions be:

u(x,0) = V 1 if x <_ xj
(5.2)

= V 2 if x > Xj,

V 1 > V 2

Let u t be approximated by a two-point forward difference for-

mula and (u P.) be approximated by a two-point backward difference
x

formula. Then the difference approximation of (5.1) is:

n+ I n 2 _n 2 n n

ui = a(ui_l ) - a(ui) + u. + xx i

If U_ is replaced by un and _n (the truncation error) is dropped,1 l
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rl = Un U_then using e i i - i' we get:

un n n
ei+l a( i-i + + (i- a(u n + u.n) }e n (5 3)= Ui-l) ei-] l I i "

where a = At/(2Ax).

The linearized stability ana2ysis requires:

a(2V I) _< 1 (5.4)

where V 1 = max lu n
i,n if"

step given by:

This inequality implies restriction on time

nt _ Ax/v I. (5.5)

In the present analysis (5.3) may be expressed as:

n_ 1 e ne = A
n (5.6)

where A is a bidiagonal matrix having diagonal elements an. =n
il

1 - a(u_ + U_) and elements below the main diagonal as a_ =
is_-i

a( un U n ) Then by Theorem: I, A is a D-matrix ifi-i + i+l " n

n

max ]aii ] _< _ < i, V n > N. (5 7)
i

If one chooses arbitrarily V 1 = 1.3, V 2 = 0.0, At = _x = 0.1

(and xj = x4) , the linearize_ stability criterion (5.5) is violated,

although (5.7) is satisfied. Computationally, instabilities were

not found and the results given by fig. 1 seem to be quite cor-

rect.

Stability analysis of other explicit finite difference analogs

may be treated similarly or by using the inequality (4_I).

If both u t and (112) are approximated by two point backwardx

V
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difference formulas, we get an implicit finite difference analog of

(5.1) and dropping the truncation error, the grid error equation

becomes :

n + U n l)e n + {i + a(u n + un)}e n, = en.-I (5.8)-a (u i 1- - i-I 1 x i 1

Here, A is a diagonal dominant lower triangular matrix and
n

a nI ii I > 1 V n > N Hence, the numerical scheme is unconditionally

stable by Theorem: 2.

Let (5.1) be expressed as:

u t + uu x = 0.
(5.9)

If u t is approximated by a two-point backward difference formula

and u is approximated by a central difference formula, the error
x

equation becomes:

n-I (5.10)n n u n n n n n
-aU.e. + {i + a - _i ) }e i + = e i "i i-1 ( i+l ui aUiei+l

Here, A is a tridiagonal matrix an_ considering the initial condi-
n

tions (5.2), la_i I _ 1. Hence, Theorem: 2 cannot be applied. Thus,

stability criterion is not satisfied. (Linearized stability cri-

terion is, however, unconditionally satisfied.) Actual computa-

tions showed instabilities. Now if we change the initial boundary

conditions as: u(x,0) = x, u(0,t) = 0, u(l,t) = i/(i + t),

ui+ 1 > ui_] V i and la_i I > 1 with diagonal dominance, the im-

plicit scheme should now be unconditionally stable. Ziebarth [6]

verified it computationally.

.

i

A Remark on Navier-Stokes' _quation.

Let us consider Navier-Stokes' equation in the vorticity-stremu
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function form as:

_t + _x_y - _y_x = 9v2_ (6.1)

V2# = -_ (6.2)

where _ = vorticity and _ = stream function. This coupled system

is subject to some specified initial-boundary conditions. If we

analyze the grid errors for implicit schemes we get two equations

of the form

e n + @ fn en-i
_n n (6.3)

A fn = e n
n

where e n = grid error for _ and fn = grid error for _ [7].

equations may be expressed as

(6.4)

These

A e n = e n-l.
n (6.5)

It appears that if sharp discontinuities are present neither in the

flow field nor on the boundary, conditions of Theorem: 2 will be

satisfied. Therefore, the implicit scheme will be stable.

7. Conclusion.

If the sequence of matrices {An} be such that V n,

IIAnll _ _ < i, llenll will form a monotone decreasing sequence, where-

as if V n > N, _Anl I S a < i, IIenll may show some oscillations before

it is damped out. In both cases, however, as n _ - IIenll _ 0
\

For the linearized grid error analysis, A n = A ¥ n and if A is

a convergent matrix stability is obtaincd. Thus, linearized grid-

error theory is a particular case of the analysis presented here.
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<J Since elements of A n are functions of u n and U n, initial-

boundary conditions affect the properties of A n •

In order to chech that A n (or An I) is a D-matrix, some infor-

mation regarding the nature of the solution must be known a priori.

This may be done mathematically or experimentally or both.
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Figure I.- Explicit finite difference solution of equation (5.1).
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I. Introduction

The grid generation problem lends itself to the use of finite elements

and variational equations.

(I) Grids are usually generated as smooth solutions to "nice,"

elliptic differential equations--just the equations well suited to

variational methods.

(2) The use of smooth finite elements gives the grid a functional

expression, which can be examined, evaluated, manipulated, and modified

naturally and cheaply.

(3) The "grid equations" are chosen for their qualitative character.

Exactitude of solutions does not matter as long as this is preserved. As

a result, extremely coarse (cheap) finite elements may generate a grid of

high quality, if the boundary conditions are well parametrized.

I succeeded in demonstrating the following:

(I) Grid-quality solutions of a wide variety of equations--(direct)

Laplace's, biharmonic, Helmholtz, even nonlinear--can be generated to fit

reasonable functional boundary conditions in 2D using very coarse rectan-

gular finite elements, often 6x3 C2 bicubic. I even tried some "wavy"

operators (with no natural variational expression) to demonstrate the

method's versatility. I did not try the inverse Laplace equation, but

I expect no problem but cost.

__=
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(2) The finite element grids can be refined, locally modified and

"fine-tuned" using a simple, cheap composition-of-functions approach,
without having to solve the differential equation repeatedly.

II. The Finite Elements

Smooth, rectangular finite elements were used; the ones here are

C2 bicubic in the interior. For the linear equations, an option of CI

cubic boundary conditions with arbitrarily dense nodes was included. In

the examples shown there are, unless otherwise mentioned, six patches

"circumferentially,, and three "radially," of which only the innermost

ring of patches "radially" is plotted.

Where C1 boundary conditions are used, second derivative discontinuity

in the "circumferential" direction is confined to the ring(s) of elements
meeting the CI boundary.

III. The Variational Expressions

Both linear and non-linear equations are solved by minimizing a

variational integral. In the non-linear case there is iteration.

Equations to fourth order (i.e., expressions squared in the variational

integral to second order) are treated. In the case of the "wavy" Helm-

holtz equation H(f) = v2f + k2f = O, the variation integral for H*H is

used with Dirichlet ("underdetermined") boundary conditions.

A variational approach to solving the inverse Laplace's equation is

known, but was not tried in this research. Other inverse equations (such
as biharmonic) could also be used.

Equation Variational Int_

V2f : 0 ivfi2

v2f- k2f = 0 jvfi2+ k2f2

v2f + k2f = 0 (v2f + k2f)2

v4f = 0 (v2f)2

v2(f 2) = 0 ifvfi2
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The boundary conditions are always "Dirichlet-like" (Dirichlet for

second order, Dirichlet or Dirichlet + Neumann for 4th order), which

allows simple minimization of the integral.

Since the finite element grids were so coarse, solution of the

equations was by a one-step symmetric matrix solver.

IV. Fine-Tuning

The grids are defined by functional equations x = x(i,j), i and j

being "counting" variables. But the solutions to the differential

equations are x = x(s,t). It remains to define s(i,j) and t(i,j).

The simplest approach is to make them merely linear functions. As

a matter of fact, I imposed the boundar_conditions s(iL,J) = const,

s(iR,J) = const, t(i,j B) = const, t(i,j T) = const, so that (s,t) lies

in a box; then I manipulated the interior values through transfinite

interpolation. If i is "circumferential" the maps are as follows:

i u > (y)(j) > (v) > (si = u TFI t) FE

j : c(u,v)
(unbroken cubic in v)

Where the F.E. solution has high skewness or is nearly singular, the

first map allows the requirement on the TFI boundary condition needed to

mend this to be multiplied by a small constant, avoiding "grid folding."

A price is paid; the grid comes out looking irregular. It is better to

avoid the skewness in the FE solution itself, as by using the biharmonic

equation with perpendicular boundary conditions.

V. Conclusions

The finite element approach to grid generation has proved eminently

successful for linear grid equations. Its coarseness is a very desirable

characteristic, most encouraging from the point of view of extending it

to 3D. The wide choice of equations-'controiled:by _a small "black box"

determining the variational integrand--is another asset. So is the
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method's usability, at little extra cost, with boundary conditions more

finely specified than the interior finite element grid.

Iterative solution of nonlinear equations increases the expense by

more than an order of magnitude, usually requires numerical integration

of the variational expression (often convenient in the linear cases too),

and makes it very difficult in general to apply finely-specified boundary

conditions. I think there are better approaches (see below).

The "fine-tuning" needs further refinement itself, especially in

handling variations in the normal velocity of the grid. Choosing the

grid equation to yield perpendicularity of the finite element grid map

(possible, for instance, with the biharmonic equation) is a help. Control

of "circumferential" grid density at chosen locations worked well.

Vl. Future Directions

Algorithms should be derived to parametrize boundary conditions in

such a way as to yield good grids using direct (linear) equations, such

as Laplace's or the biharmonic. The idea is to imitate the Riemann

mapping, by slowing down where convex (avoiding boundary overlap), and

speeding up where concave (avoiding "folds" in grid interior). This

should make use of inverse equations less necessary, and if done right

should be extendable to 3D.

The "fine-tuning" algorithms must be refined. They are in principle

applicable to any grid that can be described as a function.

For the inverse equations (for instance, Thompson's method), I

suggest use of linear paneling schemes in (x,y) space. The resulting

solution can be approximated by (s,t) finite elements simply by solving

for the (few) internal nodal values of (s,t) and using inverse function

theorem derivative evaluations. If the solution needs to be iterated,

linearized variational expressions using this as a starting point should

be cheap. Such a method might even have uses in linearized flow simula-

tion, as for cheap streamline tracking.

The method needs to be extended to 3D, adapted for "block" grids

(with the equations, if desired, being valid across block boundaries),

and adapted for vector computers.
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_J VII. Figures

The figures are true representations of the functions they illustrate,

although some "handwork" was done on some of them to circumvent bugs in

the evaluation and plotting software.

All internal finite element grids are six circumferentially by

three radially, with only the innermost radial layer plotted, unless

otherwise mentioned.
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Figure I.- "Heart" - Laplace's equation was approximated, with
boundary conditions hand-parametrized to give a well-
conditioned if not unskewed grid.

ORIGINAL PA:,:X IS

OF POOP_ (.,L. '_ :, '-,"

Figure 2.- "Joukowski" (Laplace's) - The natural, analytic parametrization

of a Joukowski airfoil was imitated by a six-node C2 cubic periodic
spline. Success in avoiding skewness was middling, as the insets
show. "Radial" velocity at trailing edge was non-zero.
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Figure 3.- "Joukowski" (Biharmonic) - The biharmonic equation's
normal derivative condition was used to enforce conformality in
the limit exactly at boundaries. (This makes the grid C1 near
the airfoil, and requires the "fine" boundary condition algo-
rithm.) The insets show its success, and also that "normal"

velocity at TE is zero.

Figure 4.- "Helmholtz" - The equation is _2f _ k2f = O, k = .65, with
0 E s = 3e/_ _ 6 and 0 E t E 3, radially symmetric boundary condi-
tions, r(t=O) = I, r(t=3) = exp(_). 0 E t E 1.4 is plotted.
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Figure 5.- "Wavy Helmholtz" - The equation is V2f + k2f = O, k = _/3,
with 0 S s = 3e/_ _ 6 and 0 S t S 6. At t = O, (x,y) = (.5+cose,sine),
and at t = 6, (x,y) = exp(_) (cose,sine). x includes a wave that
traverses 1.25 cycle in joining these boundary conditions. The plot
shows all the grid (except for screen cutoffs), which was solved on
a 6×6 finite element mesh.

i X _ V 1 I I

V

i//]//
Figure 6.- Nonlinear - The equation is q2(f2) = O. This 3×3 grid, shown in

its entirety, approximates x = _I.75t+I and y = V_+-I, as expected from
equation and boundary conditions. Slight deviation is visible in x, due
to the coarseness of the grid and the (2×2) Gaussian integration.
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Figure 7. "Fine tun" .... " LaF)ia (A) = (i,j)- i ng, ce - ,
(B) = (u,v), (C) = (s,t) in the discussion of
Section IV. The wiggles in (B), due to skew-
ness, are present only to second order in (C).

Figure 8.- "Fine tuned" Joukowski (Laplace) - The result of
composition by the maps of Figure 7 is shown. (The "fine-
tuning" specifications were deliberately clumsy.) The
"shock densing" is good and the TE not too bad, but the
LE shows a nasty glitch where skewness had to be corrected.
The finite element map is that of Figure 2.
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Figure 9.- "Fine tuning," Biharmonic - Smoother than
Figure 7, since there is no skewness to be cor-
rected at the boundary.

240

Figure I0.- "Fine tuned" Joukowski (Biharmonic) - Much better
than Figure 8 at the LE, due to lack of skewness at the
boundary in the map of Figure 3. The TE is not so good,
due to adjusting to zero "normal" velocity there, a defect
more easily correctable than the problem in Figure 8.
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FAST GENERATION OF BODY CONFORMING GRIDS FOR 3-D

AXIAL TURBOMACHINERY FLOW+CAL CULATIONS

Djordje S. Dulikravich*

NASA Lewis Research Center
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A fast algorithm has been developed for accurately generating boundary

conforming, three-dimensional, consecutively refined, computational grids

applicable to arbitrary axial turbomachinery geometry. The method is based

on using a single analytic function to generate two-dimensional grids on a

number of coaxial axisymmetric surfaces positioned between the hub and the

shroud. These grids are of the "0"-type and are characterized by quasi-

orthogonality, geometric periodicity, and an adequate resolution throughout

the flowfield. Due to the built-in additional nonorthogonal coordinate

stretching and shearing, the grid lines leaving the trailing edge of the

blade end at downstream infinity, thus simplifying the numerical treatment

of the three-dimensional trailing vortex sheet.
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*NRC-NASA Research Associate, now a visiting research scientist at

DFVLR-G_ttingen Universit_t, F.R. Germany.
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The main objective of this work is to develop a fast algorithm for gen-

erating body-conforming three-dimensional computational grids. An equally

important objective is to preserve the high accuracy of the discretized re-

presentation of the solid boundaries. When analyzing steady flows thrcugh

turbomachinery rotors and stators, it is sufficient to consider a single

rotationally periodic segment of the flowfield. This segment is a doubly

infinite strip stretching in the direction of the axis of rotation. The

strip has a constant angular width of 2_/B where B is the total number

of blades. Each blade has an arbitrary spanwise distribution of taper,

sweep, dihedral and twist angle. The local airfoil shapes can vary in an

arbitrary fashion along the blade span. The rotor hub and the duct (or

shroud) can have different arbitrary axisymmetric shapes.

Such an arbitrary three-dimensional physical domain (Fig. I) is first

discretized in the spanwise direction by a number of coaxial axisymmetric

surfaces which are irregularly spaced between hub and shroud.

×
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The ma_or problem in generating the spanwise surfaces is an accurate

determination of the intersection contours between the irregular blade sur-

face and the coaxial axisymmetric surfaces cutting the blade. The coordi-

nates of the points on these contours are defined by fitting cubic splines

along the blade and interpolating at the radial stations corresponding to

each axisymmetric surface r = Constant.

///////////////////////////

B

r --1+
r(x)- rh(x)

rs(X)- rh(x)

7

7 rt
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The two-dimensional grid should have the following features: (a) grid

cells should conform with the contour shape and the shape of the periodic

boundaries ab and cd, (b) grid should be geometrically periodic in the

e'-direction meaning that the grid ioints along the periodic boundary ab

must have the sa_.e respective x'-coordinates as the grid points along the
periodic boundary cd, (c) grid lines should not be excessively non-

orthogonal in the vicinity of solid boundaries, (d) a grid line emanating

from the trailing edge should end at downsteam infinity and (e) grid cells

should be concentrated in the regions of high flow gradients.

2.505
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Once the shape of the intersection contour on a particular cutting

axisymmetric surface is known, the problem becomes one of discretizing a

doubly connected two-dimensional domain w = x + i_.
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A grid with these properties can be most easily generated with the use
of a single analytic function. One such function is

w = in + e-i8 in 0 < < i

where w = x + i8 and z = _ + i_. This complex function maps conformally
a unit circle with a slit in the middle whose end-points are situated at

z = _+m onto the cascade of straight slits in the w_-plane. Each slit has a
length £s where

£s = 4<cos 8 sinh -I 2m cos B + sin B sin -I 2m sin 8h2
I - m i + m 2 /

The slits are spaced 2_ cos 8 distance apart, where B is the stagger
angle of the cascade of slits.
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The unit circle is "unwrapped" using elliptic polar coordinates (refs. I

and 2) resulting in a deformed rhomboidal shape which is then sheared in the

horizontal and vertical direction (ref. 2) resulting in a rectangular (X,Y)

computational domain.
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The transformation of an actual cascade of airfoils will result in a

cascade of unit circles which are even more deformed. Consequently, more
nonorthogonality will be introduced in the transformation by additional

shearing of coordinates. A uniform grid in the (X,Y) plane which is symmet-

rically spaced with respect to the Y-axis, remaps back into the physical
(x,e) plane as an "O"-type boundary conforming grid. The actual radial

coordinates are obtained by fitting cubic splines along the elliptic mesh

lines and interpolating at a number of axial stations at which the radius of
the corresponding axisymmetric surface is known.
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The present method is equally applicable to the blades with blunt (or

rounded), wedge and cusp trailing and/or leading edge.

-0.7 -0.3 1.3
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A disadvantage of the present method is that it is not applicable for

the very thick, highly stagered blades which are very closely spaced. This

problem can be resolved by using a different form of the mapping function;

for example, one which maps a cascade of circles into a cascade of circular

arcs instead of a cascade of straight slots.

V
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A sample run shows that it takes 7.3 seconds of CPU time on an IBM 3033

to generate (x, y, z) coordinates of two 3-D grids and to write them on two

separate disks. The first (coarse) grid consisted of 27x9x9 points and the

second (refined) grid has 51xlSx17 points.
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ABSTRACT

In this work, a direct algebraic method has been developed and applied

to generate three-dimensional grids around wing-body configurations.

The method used is a generalized transfinite interpolation method which

generates the desired coordinate transformation using geometric data only
on the boundaries of the domain of interest. The geometric data that can

be specified includes not only coordinates on the boundaries but also

out-of-surface parametric derivatives that give a very precise control

over the transformation in the vicinity of the surface. In addition to

this, the method gives good control over the stretching of the mesh

between different boundaries.

The topology of the transformation chosen for the wing-body problem is

of a novel type which gives a grid that wraps around not only the

leading edge of the wing, but also the w_ng tip. The body is repre-

sented by a deformation of the plane-of-symmetry.

For mesh verification, a simple finite element type algorithm is used

to solve the Laplace equation (incompressible flow) on the mesh in

question. By varying the details of the matrix evaluation process it

is possible to obtain solutions which are more or less dependent on the

global mesh properties and thereby get a measure of the "quality" of the

mesh. This is essential for applications where for example finite volume

methods are used, since these methods depend on smooth global properties

of the mesh.

ORIGINAL PA, i.E -,r_,
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Fig. I. Topology of wing-body transformation.

The topology of the transformation used for the wing-body problem is

outlined by these schematic figures. In the top left figure, the com-

putational or parametric domain is shown with u,v,w as arbitrary para-

meters. The top middle and right figures illustrate the first step in

the transformation, which is a "folding" process to obtain a wing-like

inner boundary and an internal branch cut behind the wing trailing edge.

The next step is shown in the bottom left and middle figures and consists

of another "folding" process in the spanwise direction of the wing. This

results in the collapse of a surface into another internal branch cut

outside the wing and wake. The last figure shows the third and last step,

introducing the body. This is done by deforming the plane-of-syrm_etry

boundary and displacing the wing and wake appropriately.
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Fig. 2. Internal branch cuts.

The internal branch cuts are shown in both the parametric domain and

the physical domain. For actual flow computations in the parametric

domain, the usual boundary conditions have to be supplemented by

appropriate continuity conditions at the branch cuts.
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x= x ('u,v_w)

.y-
z ,, z ('_,v, w)

Fig. 3. Transfinite Interpolation

To generate the desired transformation, a generalized transfinite

interpolation method is used. This procedure (which alternately can

be viewed as a generalized spline interpolation procedure) gives a

transformation by interpolating geometric data from the six boundaries

of the parametric domain into the interior of this domain. The geometric

data needed for this method consists of coordinates and out-of-surface

parametric derivatives. With appropriate choices of coordinates and

derivatives it is also possible to generate some boundaries automatically,

thus reducing the number of boundaries that have to be specified.
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Fig. 4. Application of the transfinite interpolation method

to the wing-body transformation.

This figure shows the parametric domain and the geometric data needed

to generate the wing-body transformation. The vector valued function

_(u,v,w) is here the desired transformation [x(u,v,w),y(u,v,w),z(u,v,w)]

and is specified only on three of the six boundaries: the plane w=w_

(=the transformed wing and wake surface),the plane w=% h (=the transformed

outer boundary) and the plane v=v_ (=the transformed body and plane-of-

symmetry boundary). On the plane w=w_ , there are also out-of-surface

parametric derivatives fw , {ww , fw_;/ specified. These parametric derivatives

are essential to give a precise control over the transformation near

the Wing surface and are also necessary to generate automatically the

geometric data for the remaining three boundaries. The choice of first,

second and third derivatives is arbitrary (it is possible to specify any

number of derivatives), but has been found to give good results.

To generate the. transformation f(u,v,w) Jt is necessary to introduce blending

fmnctions _l(V); v I -< v -< v 2 and Yl(W), 72(w), Y3(w), 74(w), Y5 (w); wl < w -< w 2

with conditions:

_ (w_): o

_(_2) = o

v_(_) : o
!

_(w_) :

_(w_) : o

_"(_l) : o

_2(w2) = o

_](_) = o

_(w_) : o
U

73(wt) = 1

_"(_) : o

_](w2) -- o

v_(w l) : o

_('l) : o

_(_) : 0
fH

v_(w2) = o

_;(_) = o

_(_) : o

_9 (w_) = o

_(_2) = 1

The transfinite interpolation scheme is then defined by

_. }_(u,v,w):_z(W)_l(U,V)+_(_)_(u,v) +_(_)_l(U,v)+v_(_)_(u,v)__(_)_(u,v)

2. ?(u,v,_) : ?U_,v,w) + %_(_)[_2(u,w) }*(u,v_,w)]

The choice of blending functions has to be made with care, since they have

a direct influence on the "stretching" of the transformation between

different boundaries.
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Fig. 5. Effect of out-of-surface parametric derivatives.

These three figures show the importance of the out-of-surface parametric

derivatives that must be specified on the wing and wake boundary. The top
T r !figure illustrates the case where only the first derivative [Xw,Yw, Zw ] is

specified. This derivative determines the direction of the outgoing grid

lines (lines w_th constant u and v) and the spacing between successive grid

surfaces (surfaces with constant w). To obtain a univalent transformation,

the derivative must be adapted to the surface geometry and also vary smoothly.

An obvious way to adapt the derivative is to make it orthogonal to the surface

(middle figure). If the radius of curvature varies very rapidly however, this

simple solution does not work very well, because it requires an excessive

concentration of grid points in the critical region. A better solution is to

specify higher derivatives, for example [x_,,_ww , wwJ and [Xwv_,yw_,z_.m ]• _! r TY Z r! _ Tr! . Tr? fYT .

With these derivatives, it _s possible to obtain a great variety of transforma-

tions near the w_ng surface. The bottom figure shows an example where the

transformation is approximately conformal in the vicinity of the wing.
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F_g. 6. Detail of typical grid in the leading edge/tip region.

In order to obtain the desired behaviour of the transformation in the leading

edge/tip region of the wing, it is necessary to specify the out-of-surface

parametric derivatives as smooth functions of both the in-surface parameters u

and v. This figure is an oblique view of a typical grid in this region and

shows how the constant-v surfaces gradually collapse into the branch cut

outside the wing tip as the v-parameter is increased towards the maximum

value.

259



Fig. 7. Deforming the plane-of-symmetry to represent the body.

This figure shows the effect on the transformation of deforming the

Plane-of-sy_netry to simulate a half-body. The wing and wake surface

is translated outwards and the deformation is interpolated into the

domain in a smooth manner that is determined by the blending function

/31(v). Since the deformed plane-of-synnnetry is specified in terms of

coordinates, it is also possible to concentrate the grid lines around
the body as shown by the figure.

ORIGINAI5 PA.:E IS
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Shown in figure 8 are several views of a w_ng-body grid. Figures 8(a) and 8(b)

show from two perspective views:

- the upper ha] f of the wing and wake surface

- the upper half of the deformed plane-of-symmetry

- the internal branch cut outside the wing and wake

- one of the downstream boundaries

- the constant-u surface that emanates from the wing leading edge

Figures 8(c) and 8(d) show a constant-v surface of the same gr_d as in

figure 8(a). Th_s surface emanates approximately from the mid section of

the w_ ng.

Figures 8(e) and 8(f) show two constant-u surfaces of the same grid as in

f_gure 8(8). These surfaces emanate from the upper and lower x/c = 0.25 lines.

V U

(a) Wing-body grid viewed from below.

Figure 8.- Wing-body grid.
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(b) Wing-body grid viewed from above.

F_gure 8.- Continued.
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(c) Planar view of w_ng-body grid in wing wake region.

L Z

(d) Enlarged view of grid at wing surface.

Figure 8.- Continued.
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(e) Planar view of w_ng-body gr_d perpendicular

to the body _x_s.

264

(f) Enlargement of planar v_ew.

Figure 8.- Concluded.
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AN INVESTIGATION INTO GRID PATCHING TECHNIQUES*

C. R. Forsey, M. G. Edwards, and M. P. Carr

Aircraft Research Association

Manton Lane

Bedford, England

ABSTRACT

7

In the past decade significant advances have been made using flow field

methods in the calculation of external transonic flows over aerodynamic

configurations. It is now possible to calculate inviscid transonic flow

over three-dimensional configurations by solving the potential equation.

However, with the exception of the Transonic Small Disturbance methods

whir_h have the advantage of a simple cartesian grid, the configurations

over which it is possible to calculate such flows are relatively simple

(eg wing plus fuselage). The major reason for this is the difficulty of

producing compatibility between grid generation and flow equation solutions.

The main programs in use, eg Jameson in US and Forsey in UK, use essentially

analytic tcansformations for prescribed configurations and, as such, are not

easy to extend. Whilst there is work in progress to extend this type of

system to a limited extent, our longer term effort is directed towards a

more genera] approach. This approach should not be restricted to producing

grid systems in isolation but rather a consideration of the overall problem

of flow lield solution.

This paper describes one approach to this problem.

*This work has been carried out with the support of Procurement Executive,

Ministry of Defence.

F :
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.GRID GENERATION

GENERAL APPROACH

I.

Grid generation, or equivalent, vital to solution of general
flow field problems.

2. It is not obvious which technique to use.

3. Various methods being explored

a) Non-aligned grid

b) Aligned grid with global solution for

grid with control function

c) Aligned grid with local grids

patched together

Cathera It

Robe,s

Forsey

R.A.E

British

Aerospace

A.R.A

FIGURE I GENERAL APPROACH TO GRID GENERATION
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GENERAL APPROA_H TO GRID GENERATION
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Accepting the requirement to solve a set of discretised partial differential

equations on the nodes of a suitable grid, then some method of grid generation

is vital. Since there are a number of ways in which one can tackle this

problem and, at the moment, no one technique appears sufficiently superior to

others, it would appear judicious to attempt more than one approach. Therefore,

a program Of work is being undertaken in various UK establishments to investigate

suitable techniques and the method described in this paper is part of this

overall project.

Probably the first question one poses when considering the requirement of a

computing g_id is whether or not to align the grid with the surface. Catherall

at RAE is investigating the non-aligned grid concept. The grid, being cartesian,

can be generated in a straight forward manner with the major problems being the

complicated application of boundary conditions and the general 'housekeeping'

for complex configurations. However, extra components can be added fairly

easily and it should be versatile.

If an aligned grid is considered mandatory then the application of boundary

conditions becomes much simpler and grid generation becomes a major problem.

Roberts at British Aerospace is attempting to produce a method of grid generation

for general three-dlmensional configurations by producing a global solution of a

set of partial differential equations. The introduction of mapping singularities

is used to control the distribution of grid points using discretisation based on

tr_quin_ic splines.

The work described here investigates a method some way between these two

techniques. The requirement for an aligned grid system is accepted but with

the flow field divided into segments, each segment with its own rather straight

forward grid system. The surface boundary conditions are easy to apply but

the main problem is one of solving the flow equations through the boundaries

where the segments are patched together. This approach will now be described

in more detail.
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t_ (0.1)

x (0,o)

E ............

l_:iJ:il J i,iJ__il.

!

(1.1)

f(s,t)=(l-s) f ( O.t)*sf (1,t) °(I- t) f (s, O)ot f (s.1)

- (1-s)(1-t) f (O.O)-(1-s) t f (0.I)-s(I- t) f (1,0)-stf (I.1)

V

where f(s,t)=x(s,t) or y(s,t)

and f(s,O), f(s,1), f(O,t), f(1,t)
oRIGIN_.L p_._Z iS

OF pO01_. Q,j_.LI_Y

define the four sides as parametric functions of s and t.

FIGURE 2 BASIC ISOPARAMETRIC MAPPING
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BASIC ISOPARAMETRIC MAPPING

The patching technique consists of splitting up regions of interest into a

series of quadrilateral segments which are patched together across common

boundaries. For the grids in each segment any convenient method of grid

generation may be used. However, as it is necessary to match the grids

across common boundaries and to maintain some control over the grid spacing

in these regions, which is most conveniently done using interactive graphics,

a grid generation technique combining simplicity with minimal computer

requirements is needed.

=

_...J

One such method, which has been used extensively in finite element work, is

the isoparametric or blending function method. This method consists of

defining the x and y coordinates of points within a quadrilateral as

parametric functions (f) of two parameters (s,t) where s = 0,| and t _ 0,1

define the sides of the quadrilateral in parametric space. If the values of

f are defined along s = 0,I and t = 0,1 (ie the point distributions along

the sides are prescribed) then the blending function f defines internal points

as a smooth blending between these boundary values. Taking equal intervals

in s and t then defines the grid lines within the quadrilateral.

The values of f along s = 0,1 and t = 0,1 are defined by cubic spline curve

fits of f vs.s or t where s and t are taken as the arc lengths along the

appropriate sides.

The blending function used in the present patching method is the lowest order

blending function which is a bilinear blending. However, higher order blendings

(eg cubics) could be used with very little increase in computing time and the

extra degrees of freedom then used to define the shape of some of the internal

grid lines or the slope ol the grid lines at the boundaries.

w_.j
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I II
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(0,1)
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s (0,0)

(1,1)

(1,0) S

g=A(.:]3+BG2.Cc] oD

where g(_a)=s(_,) or t(t)

and g=O at _g=O

g =1 at _=1
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. _/_(1.1)
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/; ; J _ i

I I IJ I
i I I t

(o.o) _]_

dgld _ at _=0,1

FIGURE 3 STRETCHED

specified by user

ISOPARAMETRIC MAPPING
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. STRETCHED ISOPARAMETRIC MAPPING

The basic isoparametric mapping produces grids which vary smoothly between

opposing sides of the quadrilateral. However, for equally spaced intervals

in parametric (s,t) space the corresponding grid lines in physical (x,y)

space, although curvilinear, are still equally spaced. It is convenient to

have the facility for packing grid lines near specific quadrilateral boundaries

or near the middle of the quadrilaterals.

Hence, preliminary stretching transformations are applied to the s and t

coordinates. One simple stretching which gives considerable user control is

to make s and t cubic functions of some other parameters _ and _. Taking

equal intervals in _ and _ then results in unequally spaced intervals in s and t.

By appropriate choice of the derivatives ds/d_ and dt/d_ at each end of the cubic

it is possible to pack points towards either end (one value of ds/ds < I, the

other value > I), towards the midd]e (both values of ds/d_ > I), or towards both

ends (both values of ds/d_ < 1).

For all cases except the last a single cubic appears adequate. In the last case,

however, attempting to pack points towards both ends usually results in a grid

which has very fine spacing near both ends but which then suddenly jumps to much

wider spacing near the middle. This seems to be due to an inability to control

the slope of the cubic near the middle where the slope remains much the same

regardless of the slopes imposed at each end. One solution which we are currently

using for this case is to replace the single cubic by a cubic spline curve through

4 points. The slopes are still specified at the end pair of points and the middle

pair of points are chosen to control the slope of the curve near the middle.

In practice, the stretching parameters (ie ds/d_ and dt/d_ at each end plus the

two middle points for the cubic spline stretching) are chosen interactively by

the user with the aid of interactive graphics.

in order to increase flexibility still further different values of the stretching

parameters can be specified on opposing sides of the quadrilateral and a linear

variation between these values is used for all internal grid lines between these

two sides.
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(1.1)patch:s=1 segment A patched to s=O segment B

Y

)X

(1.2)patch" s=l segment

S

A patched to t=O segment B
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h
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Intake patching schematic

FIGURE 4 PATCHING SCHEMATIC
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4. PATCHING SCHEMATIC

Individual segments, each with their own local isoparametric grids are

joined (or 'patched') along cormnon boundar{es untii the whole region of

interest has been covered. Grid lines in two adjoining segments must meet

on their common boundary which implies that the same number of points and

the same stretching functions are used on both sides of this boundary.

However, the grid lines may change direction through this boundary, i.e. they

need not be smooth. Instead, special boundary conditions are applied on

patched boundaries to ensure flow continuity. Sides of segments corresponding

to solid surfaces or freestream condi{10nS _:a_l_ have appropriate boundary
#= z

conditions applied.

Since maximum flexibility is r_equired _n_ho0sing the way the region of

interest is split up into segments, It is necessary to allow any side of

one segment to patch to any side of _'_EFjo_ning segment. Two typical patches,
== =

designeted (I,]) patches and (1,2) patches are illustrated and there are

several others. In principle, different types of patch should not significantly

increase the difficulty of applying the appropriate patch boundary conditions

However, in practice they considerably increase the general program housekeeping

needed and in the current program not all types of patches have been allowed

for as yet.

At present the way the region is divided into segments is controlled by user

input although eventually it is hoped to (at least partially) automate this

process. Initially, all solid surfaces (eg aerofoil surfaces etc) are defined

accurately and then the user defines the segment boundaries, some of which are

parts of solid surfaces and some separate hand drawn curves. A schematic

showing a typical setting up procedure for an inlet with central bullet is

shown. The orientations of each _egme_-an_t_e type of each patch are

indicated on the schematic. _.....

k..i
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Basic unstretched grid

Final stretched grid V
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FIGURE 5 EXAMPLE OF GRID- INTAKE
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_j 5. EXAMPLE OF GRID - INTAKE

k_ ....

F_

_en the region has been divided into segments to the user's satisfaction,

the next step is to define the number of points in the s and t directions

and the corresponding unstretched grids in each segment. This gives a

general idea of what the final overall grid will be like. An example is

given at the top of Fig 5 for the intake with central bullet.

Various stretchings are then applied to t_s_and t coordinates in each

segment to remove sudden changes in the width of grid intervals (particularly

across patched boundaries) and to pack grid lines in regions where the flow

is expected to vary rapidly. The stretching parameters are modified, and the

resulting grids displayed, interactively using a graphics terminal. The

final overall grid is shown at the bottom of Fig 5. Approximately two days

work was required to produce this grid from scratch and only a small amount

of computer time was required on a modest Prime 400 computer linked to a

Tektronix 4051 graphics terminal.

A few comments regarding the choice of segments for this example may be useful,

Because of the nature of the blending functions used, the easiest way to ensure

that grid lines are approximately normal to solid surfaces is to choose the

shape of the patch boundaries which join such surfaces to be nearly normal to

the surfaces concerned as has been done in segments A and F. Furthermore, in

order to accurately model the cowl surface boundary condition and the channel

flow between the cowl and the bullet, a fine_ inner grid is patched to a sparse

outer grid but stretchings are used to ensure that a sudden change in grid

spacing does not occur at the patch boundaries.

It will be noticed that at one point five patch boundaries (ie grid lines) meet

rather than the usual four. We feel that this should give no particular problems

especially if the point is in a region where there are no flow singularities.

(There is some evidence that putting such a point at a stagnation point of the

flow can lead to difficulties).

%
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grid type 1

V

grid type 2
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FIGURE 6 EXAMPLE OF GRID- CASCADE



6. EXAMPLE OF GRID - CASCADE

The region of interest may be divided into segments, under user control, in

any number of ways and Fig 6 illustrates two different grids for a typical

cascade flow problem. The generating segments are marked on each grid. In

the two cases different numbers of segments are used with individual segments

having quite different shapes. Although there is no restriction, in principle,

on the number of segments which may be used, there is some evidence that, at

the current stage of development, the convergence rate for the solution of the

flow equation decreases with increasing numbers of segments.

The top grid shows the first attempt at a cascade grid. In this attempt the

main criterion in choosing the segment_ was to produce a fine grid spacing

around the leading edges of the two aerofoils, a region where many previous

cascade grids have been deficient. Again, notice that at one point five patch

boundaries (ie grid lines) meet rather than the more usual four.

However, after producing this grid it was realised that it would be impossible

to use periodic boundary conditions across the two lines upstream of the leading

edges of the two aerofoils without some form of interpolation. This was because

the upper and lower lines are formed by different combinations of segment

boundaries and hence have different numbers of points and different point

spacings. The same argument applies to the two lines downstream of the trailing

edge of the two aerofoils. Since neither pair of lines is intended to represent

actual streamlines, periodic boundary conditions are the only correct boundary

conditions which may be applied across these lines. Hence, the lower grid was

produced to try and overcome this restriction without significantly compromising

the other advantages of the first grid.

This perhaps illustrates the interactions between grid generation methods and

flow calculation methods as the two cannot really be studied independently.
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GENERAL TENSOR FORM OF THE FULL POTENTIAL EQUATION

(cZ-q2)vivJ_'c2(q2giJ-vivJ)a2$ * c_2._2q2__aQ a (,/-ggij)
ar I arJ ari arJ ,/-g art a-_

v

- 2vivjv k -agjk- q2vivJ a2x 1 = 0
q2- ar i ar iarJ

ri=coordinates in transform space ( P=r, r2=s, r3= t )

(_=perturbation velocity potential (}=¢.x)

c 2= 1 ÷ (Y-l) (1-q2) = square of local, speed of sound--T -

g = determinant (gij)

gij= cofactor (gij)/determinant (gij)
g.. = ax k . ax.k = metric tensor
'J ar-T

xk = cartesian coordinates in physical

vi giJvj = contravariant velocity
space (xl=x, x2=y, x3=z )

arl

qZ = vivi =

covariant velocity

total velocity

BOUNDARY CONDITIONS

1. Free stream boundary condition

a) vi=free stream velocity in i direction

or

b) ¢=0

2. Solid surface boundary condition

vi=O

3. Patch boundary condition

FIGURE 7 FLOW EQUATION
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7. FLOW EQUATION

At all interior grid points of each segment the flow is calculated by solving

a finite difference approximation to the compressible potential equation.

Appropriate boundary conditions, described later, are applied on the four

sides of each segment. We find it particularly convenient to work with the

general tensor form of the potential equation and its boundary conditions.

This is because this form eliminates dependence on the precise nature of the

local grid transformations used and because the same equations encompass both

two dimensions and three dimensions. Hence, methods developed in tensor form

are equally applicable to two and three dimensions.

In Fig 7 the tensor form of the potential equation is shown in terms of a

perturbation potential _. It is written in so called rotated form (ie with

the principle part split up into streamwise and streamnormal components). The

underlined term is the streamwise component of the principle part and it is

this term which is backward differenced in supersonic regions. The metric

tensor gij represents a transformation between physical space with coordinates

i = r,s,t.x = w,y,z and some arbitrary space with coordinates r i

This potential equation may be solved by any convenient numerical method. At

present we solve it in nonconservative form using a line overrelaxation method.

However, it is planned to implement an approximate factorisation scheme in

order to improve the convergence rate in the near future.

Three main types of boundary conditions can be applied on the sides of each

segment. The firs_ two types: solid surface conditions (ie zero normal flow

through the surface) and free stream conditions (ie zero perturbation velocity

or zero perturbation potential) are the same as used with non-patched g_ids.

These are applied in a standard way using dummy rows of grid points outside

of the relevant boundaries and no further description will be given. The

third type: patch boundary conditions are the heart of the patching method

and will be described in detail.
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(a) 2D flow equation in non-rotated form with

r I =s, r2=t

= cross derivatives -q2(c2911-vlvl)(I)ss +q2(c2g22-v2v2)(l)tt low order terms

(b) Continuity of normal vetocity across common boundary

A B
i.e

1.r0,1 ,,,.1

v
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FIGURE 8
SUBSONIC PATCH BOUNDARY CONDITIONS
- DIFFERENTIAL FORM
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4 SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENTIAL FORM

Fundamental to the satisfactory use of patched grids is the treatment of

patch boundary conditions (ie the conditions applied along the common

boundary of adjacent segments). Since such boundaries do not represent

real flow boundaries but simply boundaries between different local grids,

the flow equation is still satisfied on these boundaries and in addition

the flow velocity along and across such boundaries is continuous. These

conditions are sufficient to patch the flow calculations in adjacent segments

together to produce the overall flow solution. The technique is somewhat

easier to apply when the flow is subsonic at the boundary points and this

case will be described first.

Fig 8 shows two adjacent segments A and B where for clarity the two segments

are drawn as though separated although they are actually joined along the

common boundary. Also shown surrounding each segment is a row of dummy

points. These points do not actually exist but are convenient for the

development of the patch boundary conditions.

Taking a typical point on the common boundary the usual five point finite

difference star is shown for each segment. Points 1,2,3 are common to both

segments being on the common boundary. Points 4,7 are internal to segments

A and B respectively while points 5,6 represent dummy points. The flow

equation is solved at all internal grid points of segments A and B using

on the common boundary from the previous iteration. Hence, updated values

of _4 and #7 are available and it is required to calculate updated values of

on the common boundary, ie _], _2, _3"
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(1) Finite difference approximation to flow equation at
point 2 in segment A

a1(¢5-2¢2 + Sz.)+ a2(¢1 - 2_2 + ¢3 ) = as v

(2) Finite difference approximation to flow equation at
point 2 in segment B

b1(¢7- 2¢ 2 *_q_, * b2(¢1- 2¢2+$3) = b3

(3) Continuity of normal velocity at point 2

c1(¢5-¢ 4) *c2(=.-,1_3)*c 3 = d1($7-$6)+d2(C1-¢3),d 3

FIGURE 9 SUBSONIC PATCH BOUNDARY CONDITIONS
DIFFERENCE FORM
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SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENCE FO_M

This is done by writing finite difference approximations to the flow equation

at point 2 separately for segments A and B using second order central

differences which gives two equations and five unknowns (_I, #2, _3, #5, _6 )"

A third equation with the same unknowns can be obtained using a finite

difference approximation to the condition that the velocity normal to the

cormmon boundary is continuous across the boundary. Again second order

central differences are used to approximate the velocities. (Continuity of

velocity along the boundary is implicit in deriving the above equations). By

combining these three equations the dummy values _5' _6 can be eliminated leaving

one equation with three unknowns _I, _2, _3" Applying the same technique at all

points along the common boundary produces a tridiagonal system of equations

whigb may be solved for _I, _2' _3 etc using the standard algorithm.
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(a) 2D flow equation in rotated form with r=s, r2=t

(c2-a2 wlv]$ss +(c2-q2)v2v2_tt + c2(q2g11-vlvl)$ss ÷c2(q2g 22 - v2v2)¢tt

= cross derivatives + low order terms

(b) Continuity of norrr_l velocity across common boundary

V • V

I /,_l =
L'I_ JA

i,e.

(_s +Xs)+ ¢"1"---_2(_t ÷ xt) l =
A

F g11 (¢s +xs )*g12 (_t ÷xt )l

B

FIGURE 10 SUPERSONIC PATCH BOUNDARY
-DIFFERENTIAL FORM

CONDITIONS
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[ i__'j7 10. SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENTIAL FORM

_ L_...._ When the flow at some points on a patch boundary is supersonic there is a

further problem in applying the patch boundary conditions. This is due to

the backward differences used to approximate some of the flow equation

derivatives at supersonic points. Fig I0 again shows a pair of segments

A and B patched along a common boundary. In this case, however, there are

two rows of dummy points around each segment to allow for backward

= differencing and the difference stars have nine rather than five points.

D
r

For any specific case only seven of the nine points are actually used,

which seven depending on the local flow direction. If we assume that the

local flow is from bottom left to top right then in segment A points 1,2,3,

4,5,9,10 are used while points 1,2,3,6,7,9,12 are used in segment B.

Comparing with the subsonic case there are now three points (4,7,10) for

which updated values of _ are available from the solution of the flow

equation at internal grid points and three dummy points (5,6,12) to be

eliminated.
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(1) Finite difference approximation to flow equation at point
2 in segment A

o_c,z-2_÷%)+o ,_=_-2,3.,9).o3%_2_2._).o_c__2,2+%)=°5 .......

(2) Finite difference approximation to flow equation at point
2 in segment B

b.'_2-: !¢6_¢12) + b2 '.¢2-2¢3 ,_9 ) , b3(¢7 -2¢2 +¢6 ). b4(_1_2¢2,_3) = 1:)5

(3) Continuity of normal velocity at point 2 (central
differenced )

c1($5- ¢4)÷c2(¢1-¢3)*c 3 = d1(¢7-¢6), d2(¢1-_3)÷ d3

(4) Continuity of normal velocity at point 2 (backward
differenced )

e1(3$_ -4¢ 4 + $10), e2(3¢ 2 -4(_3" _9 ) + e 3 =

FIGURE 11

f1(3¢2-4¢6÷¢12) * f2(3¢2-4¢3 + ¢9 ) * f3

SUPERSONIC PATCH BOUNDARY CONDITIONS
-DIFFERENCE FORM
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11, SUPERSONIC PATCH BOUNDARY CONDITIONS - DIFFERENCE FORM

z

i

Thus four equations are required to eliminate the dummy points for the

supersonic case rather than three. The first three equations are

essentially the same as for the subsonic case except that appropriate

second derivatives in the two approximations to the flow equation are

now backward differenced rather than centrally differenced. After some

experimentation we find the best equation to use for the fourth equation

is another finite difference approximation to the continuity of normal

velocity condition but this time approximating the velocities by second

order backward differences in the usual upstream sense. This ensures that

the value of # at the extra dummy point (point 12 in this case) is not

....influenced by downstream values of _ which would violate the domain of

dependence conditions.

When _5, _6 and _12 have been eliminated from these four equations a

single equation with four unknowns (_I, #2, _3, ¢9 ) is left. Applying

the same technique at each point along the common boundary leads to a

quadradiagonal system of equations which may be solved for _I, 42, 43, 49

etc. In practice, we reduce this set to a tridiagonal system, which is

easier to solve, by fixing _9 at its value from the previous iteration.

Experience so far suggests that supersonic points on a patch boundary are

more likely to lead to instability than are subsonic points. However, with

some care it has been possible to satisfactorily compute cases with all

subsonic, all supersonic and with mixed boundary points including one case

where a strong shock crossed the boundary.
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FIGURE 12 COND! NOZZLE
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12. EXAMPLE CONDI NOZZLE GRID

In order to demonstrate the use of the method, we considered the case of

a duct flow. The configuration is that of a convergent-divergent nozzle

produced by a cosine distortion on the upper surface of a two-dimensional

duct with an area ratio of 0.8.

Clearly, it is possible to produce a single segment system to solve this

problem but for the sake of demonstration we have divided it into three

segments. The interfaces between the segments are denoted by the more

pronounced lines and these patches are normal to both upper and lower

surfaces. Note that, although the lines appear to have continuous

derivatives through the segment boundaries, this is not the case. The

grid points have been distributed in an appropriate manner with a much

finer grid near the bump on the upper surface. For this example the grid

extends to finite distances upstream and downstream and uniform onset flow

is assumed at the upstream end.

F_
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13. EXAMPLE CONDI NOZZLE RESULTS

In order to check the results, comparisons have been made with a well

established nozzle program developed by Baker at ARA. The case shown

here is for an onset Mach number of 0.5. The inviscid flow solution,

which is outside the range of validity of a potential method, is

nevertheless an appropriate test case with a very strong shock. The

agreement between the two methods is very encouraging and the patching

does not appear to have affected the solution. However, possibly due to

slow convergence, there was a small discontinuity across the patch but

when the mean value is used, the result is reasonably smooth. The

locations of the segment interfaces are shown on the figure. Although

they are not shown here, changes in the position and number of patches

did not affect the result significantly.

k_J
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CONCLUSIONS AND PROPOSALS FOR FURTHER WORK

1 Initial use of grid patching is encouraging

2 The range of application has been-limited

3 Further cases are now being attempted

e.g. aerofoil in wind tunnel

cascade flows

intake flows

4 Modifications required for unrestricted far field

5 Extension to three dimensions

FIGURE 14
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14. CONCLUSIONS AND PROPOSALS FOR FURTHER WORK

The grid patching technique has been investigated using two-dimensional

test cases and initial results are encouraging. However, the range of

application has, so far, been limited and cases with a greater number of

segments are now being attempted. These include an aerofoil in a wind

tunnel together with the two configurations shown earlier, cascade and

intake flows. For the latter case some work is required in introducing

extra transformations for an unrestricted far field.

We should then be in a position to deal with most two-dimensional problems

and this should form the basis of extending the techniques into three

dimensions.

_._.J
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BOUNDARY-FITTED COORDINATES FOR REGIONS WITH

HIGHLY CURVED BOUNDARIES AND REENTRANT BOUNDARIES

m

\

U, GHIA AND K,N, GHIA

UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO

A procedure has been developed, using the differential-

equation approach, for generating boundary-fitted coordinates
for regions with highly curved boundaries as well as reentrant

boundaries, such as those encountered in breaking surface

waves. The resulting coordinates are nearly orthogonal and

can provide adequate resolution even in the reentrant region.
Consistent treatment of end boundaries and the use of a

systematic initialization scheme and advanced implicit
numerical solution techniques make the procedure highly

efficient. The method developed for implicit enforcement of

the periodicity boundary condition should be beneficial in

the analysis cf turbomachinery flow applications.

= PrecedingpageNank
- " iHb



CONSISTENT TREATMENT OF END-BOUNDARIES
v

B
!

A

¢=@max

B I n-i

{=0 __curves of

/_ =cons rant

V777n-- n--0 -----m-
A (¢=0) z

A limiting form of the coordinate e_uations at the

end-boundary is solved to determine, prior to the complete

solution, the point distribution at this boundary, con-
sistent with the interior distribution. This procedure

avoids discontinuities in the transformed-coordinate

derivatives near the end-boundaries, while maintaining
Dirichlet boundary conditions for the transformation.
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SOLUTION OF LIMITING EQUATION AT END-BOUNDARY

-Qa i

-i.0 -0.6 -0.2 +0.2 0.6 1.0

1.0 , ,

. . lail=°'°°11

lail=O'Ol I Y

0,0 ! ! L I

0.8 1.0 1.2 1.4 1.6

Y

1.8

where

Q(n) =

.d) + Q 3 0
rlrl (hq =

2

i___exp [- (n-n k)Z ak
k=l

2/<2b 2) ]

al < 0 ,

b I = b 2 = 0.1

ql = 0 •

fall = a 2

= 1
n 2
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GEOMETRIC INITIALIZATION

INITIALIZATION PROCEDURF

INITIALIZATION BY

LOCALLY SELF-SIMILAR SOLUTION
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INITIALIZATION PROCEDURE

GEOMETRIC INITIALIZATION

1
IIIL

I
I

/

--...

INITIALIZATION BY LOCALLY SELF-SIMILAR SOLUTION
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SURFACE-ORIENTED COORDINATES FOR DUCT WITH HIGHLY

CURVED BOUNDARIES

BOUNDARY-ORIENTED COORDINATES FOR A TYPICAL SURFACE WAVE

WITH REENTRANT BOUNDARIES

i

LLL
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SURFACE-ORIENTED COORDINATES FOR A TURBINE CA_ -

(129x32) NONUNIFORM GRID WITH EASILY APPLICABLE PERIODICITY

V
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i
STREAMWISE-ALIGNED SURFACE-ORIENTED COORDINATES FOR A TYPICAL

TURBINE CASCADE - (161 X 33) NONUNIFORM GRID

=

=

|
!
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TABLEi.
EFFECTOFMULTIGRID(MG) ITERATIONTECHNIQUEON
CONVERGENCEOFCOORDINATESOLUTIONFORCASCADE
WITHEASILYAPPLICABLEPERIODICITY

Method

ADI
SIP
MG-SIP

ADI
SIP
MG-SIP

MG-SIP

Grid

(65x 17)
(65 x 17)
(65x 17)

(65x 17)
(65 x 17)
(65x 17)

(129 x 33)

Work Units of
Resp. Finest Grid

I00
53
6.5

95

25

7.5

6.4

CPU

Seconds

37.69

11.96

2.08

36.67

6.33

2.32

8.44

Remark s

uniform spacing

uniformspacing

uniform spacing

nonuniform spacing

nonuniform spacing

nonuniform spacing

nonuniform spacing

%J

Method

SIP

MG-SIP

MG-SIP

MG-SIP

TABLE 2.
CONVERGENCE OF COORDINATE SOLUTION FOR CASCADE
GEOMETRY WITH PERIODICITY USING A STRONGLY

IMPLICIT PROCEDURE (SIP) AND MULTIGRID (MG)
TECHNIQUE

Grid

(161 x 33)

(161 x 33)

(161 x 33)

(81 x 17)

Work Units of

Resp. Finest Grid

81.00

7.48

8.23

8.88

CPU

Seconds

=I00.0

i0.79

11.49

4.02

Remarks

uniform spacing.

convergence is one
order less than for

nonuniform spacing.

uniform spacing

nonuniform spacing

nonuniform spacing
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TYPICAL SURFACE-ORIENTED COORDINATES FOR A CASCADE WITH

HIGH STAGGER - (65x21) NONUNIFORM GRID

J
/ /

/
/ /

/ /

This figure shows a multiple-circular-arc supersonic compres-

sor cascade with a large stagger angle and a typical coordinate

distribution for such a cascade. The grid lines are concentrated

near the surface of both the blades, especially near their leading

and trailing edges, in order to provide good resolution for the

viscous and shock effects in these regions. In addition to the

nonuniform distribution of the grid points, an effort has been

made to maintain near-orthogonality wherever possible. The exist-

ing non-orthogonality can be easily removed by increasing the

number of points in the streamwise direction, although the coordi-

nate distribution shown in this figure may actually be preferred

for supersonic cascades. Moreover, the point distribution along

the free boundaries is such as to enable enforcement of the peri-

odicity condition, i.e., the point distributions along BC and DE

are the same as along B'C' and D'E' respectively. The number off

working units required to generate the (65 x 21) coordinates shown

was 8.44 using the SIP-multigrid method; the corresponding CPU

time was 3.48 seconds.
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CONCLUSIONS

o

o

Generation of coordinates for regions with highly curved

boundaries requires suitable initial conditions; locally
self-similar equations provide an excellent non-iterative
initial solution.

Generation of appropriate Dirichlet boundary conditions even

with non-zero forcing functions enhances solution convergencerate.

o Use of implicit numerical solution procedures together with
the multigrid iteration technique constitutes an effective

method for solution of the nonlinear governing differential
equations with large number of grid points.

o An adaptive coordinate distribution is formulated for the

breaking surface-wave problem with a reentrant boundary;
solutions are presently being obtained for a free surface

wave starting from an initial sinusoidal form and under-
going the breaking phenomenon.
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A SIMPLE NUMERICAL ORTHOGONAL COORDINATE

GENERATOR FOR FLUID DYNAMIC APPLICATIONS

Randolph A. Graves, Jr.

OAST Aerodynamics Office

NASA Headquarters

Washington, DC

Abstract

An application of a simple numerical technique

which allows for the rapid construction of

orthogonal coordinate systems about two dimen-

sional and axisymmetric bodies is presented.

This technique which is based on a "predictor-

corrector" numerical method is both simple in

concept and easy to program. It can be used

to generate orthogonal meshes which have unequally

spaced points in two directions. These orthogonal

meshes in their transformed computational plane

are, however, equally spaced so that the

differencing for the metric coefficients and the

fluid dynamic equation terms can be easily

determined using equally spaced central finite

differences. Solutions to the Navier-Stokes

equations for flow over blunt bodies with

reverse curvature are presented. The coupling

of the time dependent fluid dynamic equations

and the coordinate generator worked well with

no undersirable effects noted.

=
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Flowfield Geometrical Relationships

The numerically generated orthogonal coordinates
are determined from the original cartesian coordinate
systems description of the body surface and outer
boundary. Taking the origin of the X,Y system as
lying inside the body to be described, the surface
distance _, which forms one of the transformed
orthogonal coordinates, can be easily calculated bydefining _ as zero at origin of the region of
interest and increasing to unity at the end of the
region (nondimensionalized surface distance). The
other orthogonal coordinate, D, is taken as zero on
the body surface and as unity on the outer boundary.
Thus the region of interest is transformed into a
nondimensional square.

Y

SHO(

-I.

BODY SURFACE

r
$
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Level Line Construction

The level lines between the outer_boundary and the
body surface can be constructed arbitrarily; however,
the easiest approach is to construct the level lines
along straight lines connecting corresponding points
on the body and the outer boundary. The mesh points
on the outer boundary are not the final mesh points

but initial values used only to set up the level lines.

The actuai mesh points will result from the numerical

generation of the orthogonal normal lines. The spacing

of the level lines is arbitrary and highly stretched

meshes can be easily constructed.

V
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Normal Line Construction Technique

Once the level lines have been determined, the normal
lines are constructed numerically so that an orthogonal
system is defined. The approach to the construction of
the normal lines is the one given by McNally which uses
a simple "predictor-corrector- technique analogous to
the trapezoidal integration method of numerical inte-
gration. In this technique, the solution is first
predicted from the level line at a known point by using
the Euler method. Once the predicted point on the next
level line is obtained, the slope at that point is calcu-
lated and a new predicted point is obtained using this
slope. The actual solution is then a combination of
these two solutions, i.e. the final X,Y values are an
average of the predicted and corrected ones.

¥
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Typical Coordinate Mesh Construction

Starting on the body, the normal line construction

technique proceeds point by point along a level

line until all normals on that level have been

constructed. The solution then proceeds to the

next level and the process is continued until the

outer boundary is reached. Thus the complete

mesh system is numerically generated in a simple

straight forward, noniterative process. Since

the computational plane (_,D) is an equally spaced

rectangular region, the metric coefficie ntscan be

determined from the completed mesh system using

equally spaced finite difference relations. Fourth
order accurate difference relations are recommended

as they provide for smoothly varying metric coeffi-

cients.

TYPICALNORA'_AL
LINECONSTRUCTEDBY
"PREDiCTOR-COi
PROCESS
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Shock and Sonic Line

Solutions to the laminar flow Navier-Stokes equations
were obtained for flow over bodies with blunted noses,
including reverse curvature. These bodies were
generated using the following cubic forebody generator,

X=Xo +A1 y2 +A2y3

where X° determines the nose offset while the coefficients
A] and A2 are determined such that the forebody nose
s_ction joins smoothly to the conical flank. This
solution was run for a free stream Mach number of 10.33
and Xo=.4. The shock shape and sonic line are typical
of the solution for bodies with very blunt nose regions.
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Converged Coordinate System

The converged coordinate system shown for Xo=.4 is

composed of 15 transverse stations and 31 normal

stations. The normal direction spacing is highly

stretched to provide resolution for the boundary layer.

There is only mild stretching in the transverse

direction to provide for improve stagnation region

resolution. There were no undesirable effects noted

in the coupling of the viscous flow calculations with

the coordinate generation.
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A THREE-DIMENSIONALBODY-FITTEDCOORDINATE

SYSTEMFORFLOWFIELDCALCULATIONSON

ASYMMETRICNOSETIPS

DARRYL W, HALL

SCIENCE APPLICATIONS,

MCLEAN, VIRGINIA

INC,

ABSTRACT

This presentation describes a three-dimensional body-fitted coordi-
nate system developed for use in the calculation of inviscid flows over
ablated, asymmetric reentry vehicle nosetips. Because of the potential
geometric asymmetries, no standard coordinate system (eog., spherical,
axisymmetric reference surface-normal) is capable of being closely aligned
with the nosetip surface. To generate a 3-D, body-fitted coordinate
system an analytic mapping procedure is applied that is conformal within
each meridional plane of the nosetip; these transformations are then
coupled circumferentially to yield a three-dimensional coordinate system.
The mappings used are defined in terms of "hinge points", which are
points selected to approximate the body contours in each meridional
plane. The selection of appropriate hinge points has been automated to
facilitate the use of the resulting nosetip flow field code.

Precedingpageblank
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PROBLEM DEFINITION V

The goal of this effort is the development of a procedure for cal-
culating supersonic/hypersonic inviscid flows over asymmetric ablated

reentry vehicle nosetips. These asjn_netric shapes, such as illustrated

in this figure, result from asymmetric transition on the nosetip, which

occurs at the lower altitudes during reentry (i.e., below 15.24 km).

Because these shapes occur in the high Reynolds number, turbulent regime,

with thin boundary layers, an inviscid solution is capable of accurately
predicting the pressure forces on the nosetip. The nosetip flow field

solution is also required to provide the required initial data for after-

body calculations; this coupling of nosetip and afterbody codes allows

accurate prediction of the effects of the nosetip shape on the afterbody
flow field.

The flow field code developed is a finite-difference solution of

the unsteady Euler equations in "non-conservation" form (i.e., the de-

pendent variables are the logarithm of pressure, P, the velocity compo-
nents, u,v,w, and the entropy, s). In this approach the steady flow

solution is sought as the asymptotic limit of an unsteady flow, starting
from an assumed initial flow field.

CALCULATION OF SUPERSONIC/HYPERSONIC INVISC]D FLOWS OVER ASYMMETRIC ABLATED

REENTRY VEHICLE NOSETIPS

ASYI_METRIC ABLATED NOSETIP SHAPE

APPROACH

• FINITE-DIFFERENCE SOLUTION OF UNSTEADY EULER EQUATIONS

• STEADY FLOW SOLUTION SOUGHT AS THE ASYMPTOTIC LIMIT OF

UNSTEADY FLOW

31 6
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COORDINATE SYSTEM REQUIREMENTS

It is well known that accurate numerical calculation of fluid flows
requires the use of a coordinate system closely aligned with the principal
features of the flow. For the nosetip problem this requirement would be
satisfied by a coordinate system which closely follows the body shape and,
hence, the streamlines of the flow. Because of the asymmetric nosetip
geometries being considered, standard coordinate systems (e.g., spherical,
axisymmetric reference surface-normal) are incapable of being aligned with
the nosetip surface at all points. Thus, a coordinate transformation is
sought that will align the coordinate system with an arbitrary nosetip
geometry. By requiring the transformation to be in analytic form, the
need of solving partial differential equations to define the transformation
can be avoided. Finally, the transformation should be in a form that
readily lends itself to automated definition, minimizing the inputs re-

quired of a user of the code.

OPTIMUM COORDINATE SYSTEM FOR NUMERICAL FLOW FIELD CALCULATIONS

IS BODY-ORIENTED

COORDINATETRANSFORMATIONSOUGHTTHAT:

I.) ALIGNS COORDINATESURFACESWITH BODY

SURFACE

2.) IS ANALYTIC (SOLUTION OF PDE'S NOT REQUIRED

TO DEFINE TRANSFORMATION)

3.) CAN BE READILY AUTOMATED(TO MINIMIZE INPUTS

REQUIRED FROMUSER)
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COORDINATETRANSFORMATION

The nosetip geometry is defined in an (x,y,@) cylindrical coordinate

system, and a mapping to a (_,n,e) transformed coordinate system is sought.
Since current reentry vehicle nosetips are initially axis_nT_netric (prior
to ablative shape change), it is assumed that nosetip cross-sections re-

tain some "axis3msnetric" character during reentry. Thus, no transforma-

tion of the circumferential coordinate is required, and e = @ is assigned.
(This transformation can readily be generalized to 0 = f(¢) if required

for other applications of this approach.) Within a @ = constant merid-

ional plane, the transformation reduces to the two-dimensional form

:_(x,y), q = q(x,y). Conformal transformations from the z : x+iy to
the_= _+in plane are desirable, ensuring that an orthogonal (_,n) grid
maps back onto an orthogonal grid in the (x,y) plane.

(x,y,¢) CYLINDRICAL COORDINATES IN PHYSICAL SPACE

(_,n,e) COORDINATES IN TRANSFORMEDSPACE

TRANSFORMATION OF CIRCUMFERENTIAL COORDINATE NOT REQUIRED

(NOSETIPS INITIALLY AXISYMMETRIC); ASSUME TRANSFORMATION

TAKES THE FORM

: _ (x,y,@)

n :n (x,y,¢)

o=¢

IN A MERIDIONAL PLANE (¢ : CONSTANT), THE TRANSFORMATION

REDUCESTO

= _ (x,y)

n = n (x,y)
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DEFINITION OF TRANSFORMATION

The approach used to define the coordinate transformations is a
modification of the "hinge point" approach of Moretti*. The mapping

is defined as a sequence of conformal transformations of the form

6j

zj+ I - I = [zj - hj+l, j]

where zj = xi +iyi (j = I is physical space) and hi,j is the ith hinge

point in the_zi p_ane. The hinge points in the physlcal (Zl) plane are
selected to approximately model the body geometry.. By mapping the

hinge points sequentially onto the horizontal axls, the image of the

body surface will then be a nearly horizontal contour.

INDEPENDENTLY IN EACH MERIDIONAL PLANE, DEFINE A SEQUENCE

OF CONFORMAL TRANSFORMATIONS

6j

zj+I - I = Izj - hi+l,j] J = 1,2.....JA

zj = xj + iyj (j = I IS PHYSICAL SPACE)

= ith "HINGE POINT" IN jthsPACE
hi,j --

HINGE POINTS ARE SELECTED TO APPROXIMATE BODY GEOMETRY

Yl

2,I

, [] h4,1

,i., f ,9?
O I D ''2'I _ Xl

HINGE POINT DEFINITION

*Moretti, G., "Conformal Mappings for Computations of Steady, Three-
Dimensional, Supersonic Flows," Numerical/Laboratory Comp_9_terMethods

in Fluid Mechanics, ASME, 1976.

31 9



V SEQUENCE OF TRANSFORMATIONS

In the jthmapping of the sequence, the transformation is centered
around the hinge point hj+l, j. The mappings have the property of kee -
ing the hinge points, h{ _ (i<_+l_ on the h_-^_+-_ _-: .... P

• . .,H _ _ J u-,LuH_al _xl_, wnlle mappinq
 he_h] gepo_gt hj+2,j.?n_o the horizontal axis• Thus, after JA trans- -
urm_ons, a!l JA+Z hlnge points in the JA+I space will lie on the

horizontal ax_s. (Each mapping in this sequence may be considered a

"point-wise Schwarz-Christoffel" transformation.) This figure illustrates
the sequence of transformations for JA = 3.

Yl

__"""h]

21 PLANE

_x I

\

b
I

I
I

I
I

zZ PLANE

i Y3

z3 PLANE

q,
,,J,3

\
\
[]

.- x 3 Y4

_-_}--_-E}_---------{_-_- ----.,,.. x4

z 4 PLANE

EXPONENTSOF TRANSFORMATIONS: 6. -
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TRANSFORMATIONS - CONTINUED

In order to establish a grid suitable for flow field calculations

when the image of the body contour is a nearly horizontal surface, it is
desirable to have the image of the centerline external to the body lie

along the vertical axis. This is achieved using an additional conformal
transformation, centered around the second hinge point, of the form

i )1/2
ZJA+2 = (ZJA+1 - h2,JA+l •

The last transformation is a simple stretching (which is also conformal):

+ in = azjA+2 •

(This stretching is used in the calculation procedure along the center-
line.) This figure illustrates the body contour resulting in the _-plane
for the case of a sphere with JA = 3, where the body surface is defined

as n =

MAP CENTERLINE ONTO VERTICAL AXIS WITH

: - h )i12
ZjA÷2 (ZJA+I 2,JA+I

ALLOW FOR SIMPLE STRETCHING (REQUIRED FOR CENTERLINE

TREATMENT) WITH

: _ + in = azjA+2

RESULTING BODY CONTOUR:

n = b(_)
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COMPUTATIONAL TRANSFORMATION

For the flow field calculation it is desirable to have equally
spaced grid points. Thus, a transformation to a computational coordinate

system (X,Y,Z) is used, in which grid points are equally spaced circum-

ferentially in e, longitudinally in { within each meridional plane, and

i_ n between the body and the shock. It is important to note that the
,Y,Z) system is not orthogonal, and that the comPutationa I transforma-

tion varies with time as the bow shock position varies during the time-

dependent calculation. These sketches illustrate the computational grids
resulting in a meridional plane in both physical (z = x+iy) and trans-

formed (_ = _+in) space for a typical ablated nosetip contour (with the
shock layer thickness exaggerated for clarity).

DESIRE GRID POINTS EQUALLY SPACED IN ( ALONG BODY, IN n BETWEEN

BODY AND SHOCK, AND IN e CIRCUMFERENTIALLY

8
X=_

Yl

PHYSIC.A[ SPACE
-_- x!

V

322
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TF...j PARAMETERS OF THE TRANSFORMATION

In transforming the governing equations from physical to the (X,Y,Z)

computational coordinates, certain derivatives of the transformation are

required. Because the transformation has been defined in analytic form,
these derivatives can readily be evaluated analytically and are functions

only of the hinge point locations. Within a meridional plane (dp= constant),

the required derivatives are g = B_IBz and _ = _(log g)l_. Circumferen-
tially, the independent transformations in each meridional plane can be
coupled to produce a three-dimensional transformation by assuming that
hinge point locations can be expressed as hi,j(@). The required circumfer-
ential parameters of the transformation, _@ and g@, can be evaluated
analytically if each meridional plane has the same number of hinge points
and assuming the form of interpolating functions for hi,j(@). Alterna-
tively, it has been found to be sufficient to evaluate _6 and g@ from
Taylor series expansions using data at computational (X,Y,Z) mesh points,
with the forms of the resulting expressions shown in the figure.

REQUIRED IN WRITING GOVERNINGEQUATIONS IN TRANSFORMED

COORDINATES

BK : Geim " : " + nyg = _¥ : _x + Inx -_Y

_(Io___)
¢ =--_C -

CAN BE EVALUATEDANALYTICALLY

CIRCUMFERENTIAL PARAMETERS OF THE TRANSFORMATION

_¢,g@ CAN BE EVALUATED ANALYTICALLY iF EACH MERIDIONAL

PLANE HAS THE SAME NUMBER OF HINGE POINTS, ASSUMING INTER-

POLATING FUNCTIONS FOR hi,j{¢)

.... -L . TI _L .

ALTERNATIVELY, EVALUATE FROMTAYLOR SERIES EXPANSIONS:

_2-_1-g(z2-z I)

_¢ = E@+ in¢ : ¢2_@i

g2-g1-g2 ¢(z2-2I)

g¢ : @2._1

( )i_ (x-_x,Y,Z), ( )2 * (X+_X,Y,Z) IN COMPUTATIONALMESH

323



AUTOMATIC GENERATION OF HINGE POINTS

To simplify the application of this coordinate transformation to the
as_n_netric nosetip flow field problem, the selection of hinge points that
define the transformations has been automated. Within each meridional
plane to be computed, body normals are constructed at points equally
spaced in wetted length along the body profile. The hinge points are then
selected to lie a distance 6 inside the body along these normals. By re-
lating 6 to any convenient scale factor for a nosetip geometry, the only
input required of the user of the code is the number of hinge points to
be used. The locations of the first two hinge points (i.e., those that
lie on the x axis) are the same in each meridionai Plane, in order to
simplify the treatment of the centerline. Typically, no more than nine

hinge points per meridional plane (JA = 7) are necessary for the nosetipflow field problem.

V

!Y!

--0

q,x I

HINGE POINTS LOCATED DISTANCE 6 ALONG INWARD BODY NORMALS, FROM

BODY POINTS EQUALLY SPACED IN WETTED LENGTH

ONLY INPUT REQUIRED OF USER IS NUMBER OF HINGE POINTS TO BE

USED IN EACH MERIDIONAL PLANE
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TREATMENT OF CENTERLINE

The greatest complication encountered in the Use of this 3-D coordi-
nate transformation is the extra care that must be taken in treating the
grid points on the centerline. Since the transformations in each merid-
ional plane are independent, the scale factors g = _/@z along the
centerline will not be the same in each meridional plane. Thus, one
computational grid point at the centerline will represent different physical
points for each value of _ . To minimize these discrepancies, the stretch-
ing transformation _ = azjA+2 is used to ensure that the images of the
first hinge point are coincident in all meridional planes. The remaining
discrepancies are small enough that simple linear interpolations can be
used to account for differences in the scale factors.

In addition to the mapping complications along the centerline, the

governing equations in cylindrical coordinates are singular along y : O.
This difficulty has been avoided by using a Cartesian (xl,x2,x3) coordinate
system for the centerline analysis. The required Carteslan derivatives
can be expressed in terms of the radial derivative _/BY in cylindrical
coordinates for certain values of _, as shown in this figure. The only
restriction resulting from this analysis is that computational planes must
be located at _ = O, _/2, _, and 3_/2.

AT THE CENTERLINE (y : 0), SCALE FACTORS (g : 3¢laz) VARY WITH ¢

STRETCHING TRANSFORMATION USED TO MINIMIZE DISCREPANCIES, WITH

hI,JA+2(¢ = O)

CARTESIAN COORDINATES (xl,x2,x 3) USED IN CENTERLINE ANALYSIS

L

--=

WITH

Bx-_ - y 8¢

B - sin @ a-y Y B¢-
Bx 3

1im I _ 82
_O y _ = B'_ FINITE,

a - cos ¢ _, ¢ = O,
Bx 2

_ 3_: sins ' ¢ : 2' T
_x 3
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RESULTING FLOW FIELD CODE

The 3-D, time-dependent, inviscid nosetip flow field code that was
developed using the 3-D coordinate transformation described here is called

CM3DT (C_onformal M__apping3-D Transonic). This code can treat ideal or

equilibrium real gas thermodynamics, has both pitch and yaw capability,

and is able to treat weak embedded shocks on indented nosetips using the
_-differencing scheme*.

To provide total body inviscid flow field capa-
bility, the CM3DT code has been coupled to the BMO/31S**, NSWC/D3CSS +,

and STEIN ++ afterbody codes. Complete details on the CM3DT analysis and

results obtained with this code may be found in the following references"

Hall, D. W., "Inviscid Aerodynamic Predictions for Ballistic Reentry

Vehicles with Ablated Nosetips," Ph.D. Dissertation University of Penn-
sylvania, 1979.

Hall, D. W., "Calculation of Inviscid Supersonic Flow over Ablated Nose-
tips," AIAA Paper 79-0342, January 1979.

CM3_? C_SNFO_AL M_APPIHG 3.D _RA_Sf.NIC)

NOSETIR FLOW' FIELD _0_[

m ID.=AL OR {QUILIBR]_ RZAL r_AS THEFIMODYtIAMIES

• PITCH A_D YAK CAPABILITY

• _-D,FFERENClnC, SZHEME USEO T_' T_AT W_A_Z E_B_DDED

SH_CKS OR INDENT_CO nOS[T_F_

o CO_LFD TO AFTFRBOOY EO{)_S f_)_ ?O_A! 'NVISCID

FLO_ FIEtD CAPABILIIy

o _S_/_3CSS

• ST_

O _I,_ CORF _TOPJ_6E R_Q_ZRED

*Moretti, G., "An Old Integration Scheme for Compressible Flow Revisited,
Refurbished, and Put to Work," Polytechnic Institute of New York, POLY-
M/AE Report 78-22, September 1978.

**Kyriss, C. L. and Harris, T. B., "A Three-Dimensional Flow Field Computer

Program for Maneuvering and Ballistic Reentry Vehicles," 10th U,S. Navy

Symposium on Aeroballistics, July 1975; also, Daywitt, J., Brant, D., and

Bosworth, F., "Computational Technique for Three-Dimensional Inviscid Flow

Fields about Reentry Vehicles, Volume I: Numerical Analysis," SAMSO TR-
79-5, April 1978.

+Solomon, j. M., Ciment, M., Ferguson, R. E., Bell, J. B., and Wardlaw,

A. B., Jr., "A Program for Computing Steady Inviscid Three-Dimensional

Supersonic Flow on Reentry Vehicles, Volume I: Analysis and Programming,"
Naval Surface Weapons Center, NSWC/WOL/TR 77-28, February 1977.

++Marconi, F., Salas, M., and Yaeger, L., "Development of a Computer Code

for Calculating the Steady Super/Hypersonic Inviscid Flow around Real

Configurations, Volume I. Computational Technique," NASA CR-2675, April 1976.
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Z_ .....

CM3DT RESULTS

This figure presents some typical results obtained with the CM3DT
inviscid nosetip flow field code. Shown are comparisons of predictions
to data obtained for the PANT Triconic shape* at M = 5. It is signifi-
cant that attempts to compute the flow over this sTender shape using a
time-dependent code formulated in a spherical coordinate system were
unsuccessful. CM3DT, with its body-oriented coordinate system, was able
to obtain converged solutions for this shape, with the predictions agree-

ing well with the data, as seen in this figure.

Q4

o7

I ol

=°0.4

O [Iv[l -Dn_z I_IA
l.r " 19 I • 1ollrl o.l

.-----L ....

SURFACE p_I_su_f F_[_ICTIONS rO_ _H_ F:_-I(] SuRrAC[ _AE_Un_ _[OICT]_N_ FO_ II_
PANT IRnceNIC AT I%. " S, • " ]0"

l_nco_,c ATfi.'S, --0" (Note: i ft " 0.3048 m)

0

r

*Abbett, M. J. and Davis, J. E., "Interim Report, Passive Nosetip Tech-
nology (PANT) Program, Volume IV. Heat Transfer and Pressure Distri-
bution on Ablated Shapes, Part II. Data Correlation and Analysis,"

Space and Missile Systems Organization, TR-74-86, January 1974.
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CM3DT - RUN TIMES

On a CDC Cyber 176 computer, the CM3DT inviscid nosetip code with

_-differencing requires approximately 0.00045 CP seconds per grid point

per time step (iteration). Typically, 400-500 time steps are required

to obtain a converged solution. It is estimated that the computer time

required for a solution has been increased by approximately 20% by using
the 3-D coordinate transformation described here, when the parameters

of the transformation on the moving grid are updated every ten time steps.
When compared to the standard MacCormack differencing scheme, the use of

_-differencing scheme increases the run time requirements approximately
50% for this code.

ON A CDC CYBER 176, CM3DT REQUIRES 0.00045 CP SECS/POINT/STEP

FOR IDEAL GAS CALCULATIONS WITH h-DIFFERENCING

• 20% PENALTY INCURRED FOR COORDINATE

TRANSFORMATION(PARAMETERSON MOVING

GRID UPDATEDEVERY I0 TIME STEPS) V

• 50% PENALTY INCURREDFOR h-DIFFERENCING

(RELATIVE TO MAC CORMACKDIFFERENCING)
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CONFORMAL MAPPINGS OF MULTIPLY CONNECTED REGIONS

ONTO REGIONS WITH SPECIFIED BOUNDARY SHAPES

Andrew N. Harrington

School of Mathematics

Georgia Institute of Technology

aI

a4

Y2

a2 A1

a3 A4

f

£ conformal f(aj) = Aj, Vj -_ F.J

F1 F2

A2

A3

The author has developed and implemented a numerical procedure to compute

the conformal mapping of a given n-tuply connected region onto a region with

any specified boundary shapes and with several possible normalizations. If we

start with a region whose outer boundary is a rectangle, we may arrange that

the outer boundary of the image region is also a rectangle and the vertices

map to vertices. We may choose the inner boundaries to map to rectangles or

to any other shapes.

oO
• I

We may also consider unbounded regions and find a mapping normalized at

m z + O(i/z). We may choose the boundaries of the image region to be circles

or any other shapes.
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Method

Though we may specify boundary shapes and orientations arbitrarily, the

proper translation and magnification parameters must be calculated to determine

the image domain and the mapping. For example, in order to find a conformal

mapping between n-tuply connected regions R and S containing = with f(_) = _,

we must satisfy conditions on GR and GS, the analytic completions of the Green',
functions for R and S with pole at _. We must have

GR(rj) = Gs(Sj) j = i, 2, ... n-i

where rj and sj, j = i, 2, ... n-l, are the critical points for GS and GR
labeled in the figure. Using Symm's method to approximate Green's functions

one may easily calculate the appropriate parameters. Then Gs(f(z)) = GR(Z).

The dotted curves are the level curves of Re GR and Re GS which branch at
the critical points.
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"N81:14713

BOUNDARY-FITTED COORDINATE SYSTEMS FOR ARBITRARY COMPUTATIONAL REGIONS

Edward J. Kowalski

Boeing Military Airplane Company
Advanced Airplane Branch

Seattle, Washington 98124

A computational region of arbitrary cross section presents a significant

problem in the generation of a mesh. Simple orthogonal meshes are

difficult to use because the mesh points do not naturally fall on the

region's boundaries. Differencing and interpolation schemes become

complex and cumbersome, and it is difficult to extend these schemes to

higher order because of the complex logic required. Higher order schemes

are desirable as they allow calculation of a flow to a given level of

accuracy with a lower mesh density and hence less storage than a lower

order scheme. High accuracy solutions are possible for a region of

arbitrary cross section when a boundary-fitted computational mesh is

employed. A boundary-fitted mesh is defined as a mesh in which the

boundary (i.e., a duct wall) is coincident with the mesh points that are

used for finite difference expressions at, and adjacent to, the

boundary. Interpolation is not required, and extension to higher order

differencing is straightforward. This is a significant benefit when the

boundary conditions have a dominant influence on the solution.
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This paper will discuss the application of Smith and Wiegel's method for

generating boundary fitted coordinate systems (discussed in their

AIAA-80-0192 paper entitled, "Analytic and Approximate Boundary Fitted

Coordinate Systems for Fluid Flow Simulation") for two practical flow

problems characterized by complex surface geometry:

o radial mixer lobe

o subsonic inlet designed for high angle-of-attack capability
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Figure I.- Full scale forced mixer.

!

: i

Secondary stream Primary stream

Figure 2.- Radial mixer lobe.
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In the method of Smith and Wiegel, two disconnected boundaries are

defined and an explicit functional relation is used to establish the

transformation between the physical domain and the computational domain.

The physical domain is defined by a cartesian coordinate system; the

computational domain is defined with the variables _ , q and _ with the

values:

o!

Two possible connecting functions are suggested: linear and a cubic

parametric polynomial. The following cubic polynomial equation was used

to generate meshes for both the lobe mixer and the subsonic inlet:

dX1
x * xl(C.c)t"lC_ ) 4 xz(_:.c)fzC_) 4 _ (c.c)_-3(n)

dX2
4 _ (z:.c)f4(n)

dY1
y - Yl(C.c)r_Cn) + Yz(_.C)fz[,_ ) + _ (_:.c)f3('_)

dYZ

dZ1
z - zl(c.c)f_h_ ) , zz(¢.c)fz(_), _ (c.c)f3(_)
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r_../

where:

Xf(_,_ ),Y_ (_,_), ZIC_,_ ), £ = 1,2 are the

boundary points in the physical domain

dX_ (_,_), d_Y_Y, (_,i) _.Z_ (_,_), _= 1,2 are thed_ d_
derivatives of the boundary points in the physical domain

fi(n ) = Zn:__ _"., 1

fZ(r_) • _2q3 .t3n'_-

3 2r_2+_

3 2
(4[n) = n -

The cubic connecting function forces orthogonality at the boundaries of

dXJ
the physical domain by calculating the derivatives

dYz (%,_) and dZ4 (_,_) from the cross product of the tangential
dR d_
derivatives and then dividing by the magnitude of the normal vector.
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Four extensions of the Smith and Wiegel method were necessary in order to

successfully apply their technique to the mixer lobe and subsonic inlet.

===a

V

First, because of the nature of the mixer and inlet geometries, points

defining the boundaries had to be positioned using a geometric

progression.

where

S = a + ar + ar 2 + ... + arN-1

a{1-r N)

1-r

S = the total length of the boundary

a = first increment

r : scale factor

N = number of cells (one less the number of boundary points)

For the mixer, the scale factor r was varied linearly from r = I at the

mixer entrance plane (where the boundary is an arc) to r =r
max at the

mixer exit plane (where the boundary is highly distorted). This makes it

possible to force the mesh to migrate to regions of interest without

causing significant distortions in the mesh from plane to plane. The

optimal distribution of mesh occurred when the upper and lower boundary

mesh points were stretched in opposite directions.
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SECONDARY LOBE - PLANE ' g4

GEOMETRIC PROGRESSION LONER BOUNDARY 1.0000 UPPER BOUNDARY

SLOPE SCALER LONER BOUNDARY 1.0_00 UPPER BOUNDARY

a

,w

_w

SECONDARY LOBE - PLANE 107

GEOMETRIC PROGRESSION LONER BOUNDARY 0.975B UPPER BOUNDARY 1.0500

SLOPE SCALER LONER BOUNDARY I.B250 UPPER BOUNDARY 1.0500

SECONDARY LOBE - PLANE "IZ0

GEOMETRIC PROGRESSION LONER BOUNDARY 0.9500 UPPER BOUNDARY 1.1000

SLOPE SCALER LONER BOUNDARY 1.0S00 UPPER BOUNDARY 1.1B00

Figure 5.- Geometric progression for boundary points for secondary stream.

339



jJ
Im

_w

Jl,

wm

t

--,w

PRIMARY LOBE - PLANE 94

GEOMETR]C PROGRESSION LOWER BOUNDARY ].0@00 UPPER BOUNDARY 1.0@00

SLOPE SCALER LONER BOUNDARY 1.0000 UPPER BOUNDARY 1.00B0

W:,(,

W,

w,

4,

PRIMARY LOBE - PLANE 107

GEOMETRIC PROGRESSION LOWER BOUNDARY 1,050@ UPPER BOUNDARY 1.0500
SLOPE SCALER LOWER BOUNDARY 1.0500 UPPER BOUNDARY 1.0500
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ORIGINAL PA:.:v. IS

OF POOR QUALI'_'y

w, 4, W, 4,

PRIMARY LOBE - PLANE I_B

GEOMETRIC PROGRESSION LOWER BOUNDARY 1.1000 UPPER BOUNDARY 1,1000
SLOPE SCQLER LOWER BOUNDgRY ].]000 UPPER BOUNDARY I.}000

Figure 6.- Geometric progression of boundary points for primary stream.
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The inlet has certain regions (hilite, throat, etc.) which require a fine

computational mesh to insure a detailed analysis. For this reason, four

regions along each inlet contour and five regions along the boundary of

the analysis domain required individual geometric progressions. The

scale factor, r, and the number of cells, N, of each region must be

chosen to insure a smooth progression in cell length along each of the

boundaries.

I: 1 _1

@

,b

m

d,

" "'J

C

W%.. , . •

Figure 7.- Geometric progression regions along
inlet contour and analysis boundary.
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The second extension uses a ramping function to regulate the dependence

of the connecting function on the boundary slope. This connecting

function is an explicit functional relation used to establish the

transformation between the physical domain and the computational domain.

For the mixer lobe, this dependence was regulated to redistribute the

internal mesh points and reduce mesh skewness.

In the case of the subsonic inlet, it was found that a constant value for

each plane was sufficient to insure against mesh line cross-over.

Without ramping function

342

With ramping function

Figure 8.- Connecting function dependency
on boundary slope.
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Without ramping function
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With ramping function

Figure 9.- Connecting function dependency
on boundary slope.
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The third extension utilizes the concentration function suggested by

Smith and Wiegel, but uses it to force the mesh in the direction of both

boundaries of the mixer lobe. More mesh was then needed to be linearly

added to fill the void created by this mesh concentration.

The inlet only required the mesh to be forced towards the inlet contour.

A concentrated mesh was assumed unnecessary along the spinner boundary;

it was felt that for a potential flow analysis the flow about the spinner

would not propagate upstream and affect the solution at the regions of

interest (hilite, throat, etc.). The mesh concentration for both the

mixer and the inlet permits flow analysis within the boundary layers.

Mesh concentrated towards
inner boundary

Mesh concentrated towards
outer boundary
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Mesh concentrated towards
both boundaries

Figure lO.- Mesh concentration.
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Figure II.- Mesh concentration.
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The fourth extension applies to the subsonic inlet only. It was

necessary to produce a computational mesh which possessed a smooth

progression of cell metrics and cell volumes in all directions to allow a

solution process of a flow analyser to use the grid efficiently. The

interior points of the computational mesh were "smoothed" by a multiple

application of a five point diffusion operator:

X(L,I)ne w = _{X(L-I,I)+X(L+I,I}+X(L,I-1)+X(L,i+I)-4_X(L,I)old}

Y(t, llnew = _{Y(L-I, II+Y{L+I, II+Y{L,I+I) ÷Y(L,I+I}-4-Y(L,I)old}

The value of O{ and the number of times of application were determined by

trial and error.

V

The "smoothed" boundary points could not be determined from the five

point diffusion operator since one of the required smoothing points would

be outside the mesh region. Their values were determined from t_e

intersection o_ the lines defined by the "smoothed" interior mesh points

and the boundaries.
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X(L,I)new

Y(L, I)ne w

L+I

L

L-1

+1

I

I-1

= 01, {X(L- 1,1) + X(L + 1,1) +X(L, I- 1) +X(L, I + 1)-4 • X(L, I) old

= O,{Y(L-I,I)+Y(L+I,I)+Y(L,I+I) +Y(L,I+I)-4*Y(L, Dold /

Figure 12.- Five point diffusion operator.
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Figure 13.- "Smoothed" computational mesh.
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slope of segment (_

Y(L, I)- Y(L, ! +1)

M1 = X(L, I) - X(L, I + 1)

equation of segment (_E)

Y-Y(L,I, =MI[X-X(L,i)I

slope segment (_

®

Y(L+I,I+I)-Y(L+2,1+I)

M2= X(L+ 1, I + 1) -X(L + 2, I + 1)

equation of segment (_)

Y-Y (L+ 1, I +1)= M2[X-X(L+ 1,1+ 1) 1

since a line thru segment G intersects segment 0 •

the X's and Y's of equations 0 & 0 equal each other.
Solving for X:

M,{X'L+,.,+,,1X(L, I + 1)ne w =

Solving for Y:

Y(L, I + 1)new = M 1 {X(L, I + 1)he w -

®

M 1 - M 2

X(L, I)] + Y(L, I)

+ Y(L+ 1, I + 1) - Y(L, !)

V

V



5ECONORRY LOBE - PLRNE 320

GEOMETRIC PROGRESSION LOHEQ BOUNDARY 0.95@0 UPPER BOUNDRRY 1.10_0

SLOPE SCRLER LOWER BOUNDARY 1.05_0 UPPER BOUNOR_Y I.]000

x..j

{'):?T';_/?.!:: -

PRIMRRY LOBE - PLRNE 120

GEOMETRIC PROGRESSION LOWER BOUNDR_Y 1.1000 UPPER BOUNDRRY 1.1000

SLOPE SCRLER LOWER BOUNDR_Y I._000 UPPER BOUNDgRY 1.1000

Figure 14.- Example mesh for last mixer plane.
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Figure 15.- Example mesh for
subsonic inlet.
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Conclusions

The method of Smith and Wiegel can be used to generate meshes for mixer

lobes and subsonic inlets that are compatible with flow analysis codes

requiring a boundary fitted coordinate system. Successful application of

this mesh generator required development of procedures to distribute the

mesh points along the boundaries, to regulate the dependence of the

connecting function to the local boundary slope, to concentrate the mesh

into regions of special interest, and to modify the mesh grid so that it

possessed a smooth progression of cell metrics and cell volumes in all

directions. The method of Smith and Wiegel when coupled with the

extensions mentioned above has proven to be easy to use and control for

the inlet and mixer lobe geometries investigated.

The next step is the formulation of a truncation error monitor for

arbitrary meshes. This monitor will define where in an analysis domain

the grid length scales must be changed and by what amount in order to

equalize truncation errors over the entire analysis domain. Once these

errors have been equalized, this same monitor will use several levels of

grid distribution (of the above analysis grid) to then make estimates of

the absolute truncation error spectrum. This work is currently under

contract with the NASA Langley Research Center.
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K_.., Grid Generation for General Three-Dimensional Configurations

K. D. Lee, M. Huang, N. J. Yu and P. E. Rubbert
The Boeing Company
Seattle, Washington

Abstract

The objective of the present study is to construct a suitable grid system
for complex 3-D configurations such as a wing/body/nacelle shape for the
solution of nonlinear transonic flow problems. Two approaches have been
explored based on Thompson's body-fitted coordinate concept. The most general
approach is to divide the computational domain into multiple rectangular
blocks where the configuration itself is also represented by a set of blocks,
whose structure follows the natural lines of the configuration. The
block-structured grid system is adaptable to complex configurations and gives
good grid quality near physical corners. However, it introduces algorithm
issues for the flow solution concerning the treatment of nonanalytic grid
block boundaries and nonstandard grid cells. These issues have been explored
in relation to the grid generation. A more limited approach treats a
wing/body configuration with only a single rectangular block in computational
space. In this treatment the issues involving nonstandard cells are avoided,
but other limitations on grid resolution appear. Both a linear and a
nonlinear system of grid generation equations have been developed including
methods of grid control. The linear method can generate grids of comparable
quality with order-of-magnitude less cost. Its disadvantage is the greater
possibility of ill-conditioned grids which, however, can be easily controlled
in the block-structured grid system.

Grid Generation Equations

Linear System

_" : (x, y, z)

B to G: grid control
functions of _, _, and/or

Nonlinear System

A to F: coupling terms
functions of x, y, and z

P, Q, R: grid control

J : Jacobian of the transformation

L---_C-- d

Precedingpageblank
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Figure 1. Block structuring

This is a schematic illustration of a typical block structured grid about a
wing/body/nacelle configuration. The multi-block grid obviously provides more
desireable grid densities and eliminates the "lost corner." However, it
introduces special points termed a "fictitious corner," a "collapsed edge,"
and a nonanalytic block boundary.
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Collapsed edge

Fictitious corner

Physical space
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Figure 2. Comparison of grid structure

Lost corner - a physical corner transformed into a smooth point in the

computational space

Fictitious corner - a smooth point transformed into a corner point in the
computational space

Nonanalytic block boundary - grid lines across the block boundary are
continuous but not smooth

Collapsed edge (3-D) - grid lines merge together in the physical space
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Figure 3. Block-structured grid generation process

After defining the overall block structure, a one-dimensional grid generation
along the block perimeters produces a perimeter discretization. This provides

boundary conditions for a subsequent two-dimensional grid generation producing
grids covering the block surfaces. These in turn serve as boundary conditions
to produce three-dimensional volume grids filling each block.
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Figure 4. Block-structure grid for an ellipsoid

This example shows the grid around an ellipsoid which has been transformed to
a cube in computational space. Fictitious corners can be seen.
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Figure 5. Algorithm compatability study

The effect of the grid structure and the special points on the flow solution
is explored by solving the potential flow over a cylinder. Cell-oriented flux
formulation is used to treat the algorithm issues. Surprisingly, all the grid
systems yield good resolution. Accuracy depends on the cell size rather than
the grid structure at the special points.
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Figure 6. Comparison of grids near an airfoil

The use of multi-block grid is considered for an airfoil. Compared to the

ring-type grid, the multi-block grid seems to be overly complex. Its
advantage is in its adaptability to more complex geometry.
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\

SINGLE-BLOCKGRID
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Figure 7. Airfoil study

The ability to produce accurate solutions using the multi-block grid is
demonstrated in subsonic and transonic regions. Compared to the results from
the ring-type single-block grid, remarkable accuracy was obtained even when
the fictitious corner is located in supersonic regions. All the flow and
metric quantities are defined at the center of each cell and the artificial
density method is adopted for the density retardation in supersonic region.
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Figure 8. Surface grid for a wing/body
(single-block structure)

The use of the C-type grid provides smooth grid distribution near the wing

leading edge. The body surface line on the symmetry plane coincides with a
grid line which consists of lost corners. One concern is grid quality at the

wing tip.
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Figure 9. Surface grid for a wing/body
(multi-block structure)

The use of a multi-block grid eliminates the lost corners in the single-block
grid of figure 8 and improves the grid Quality near the wing tip, while
producing the fictitious corners and nonanalytic block boundaries. Its
ability to extend to more complex configurations is obvious.
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Figure 10. 3-D flow solution

A transonic solution for a wing/body combination is obtained using the
single-block grid and compared to the experimental results. The use of
body-fitted grid system improves the accuracy near the wing/body junction.
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Figure 11. 3-D flow solution

The body-fitted grid system can produce quite accurate pressure distribution

even on the body surface. Very coarse nose grid distribution prevents fine
pressure resolution in that region.
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Effect of Grid Systemon Finite Element Calculation
K. D. Lee and S, M. Yen

Coordinated Science Laboratory
University of lllinois

Urbana, Illinois 61801

We have made detailed parametric studies of the effect of grid system on
finite element calculation for potential flows. These studies have led to the

fornmlation of a design criteria for optimum mesh system and the development of

two methods to generate the optimum mesh system. The guidelines for optimum mesh
system are:

1. The mesh structure should be regular.
2. The element should be as regular and equilateral as possible.
3. The distribution of size of element should be consistent with that of

flow variables to insure maximlm uniformity in error distribution.
4. For non-Dirichlet boundary conditions, smaller boundary elements or

higher-order interpolation functions should be used.
5. The mesh should accommodate the boundary geometry as accurately as

possible.

We shall present in this paper the results of our parametric studies.

v=O @ v=rr

U=UO0

(i)

(u,v): Elfipt{c-Cylindricel Coordinate System

(Subscript eo Denotes Free Stream Condition)

Type of
Boundary
Conditions

Variable

_,10t(11
_c
o _<2!

Problem I

Oi r i chief

Stream
Function

¢/=0

_=0

Problem]I

Neumonn

Velocity
Potential

Problem TFr

Mixed

Velocity
Potent iol

Fig. i. We choose three potential flow problems around an elliptic cylinder as

the test problems to evaluate and to compare computational errors.

In these problems, the computational domain is transformed into a

rectangular domain by using the elliptic-cylindrical coordinate system
(u,v). This corresponds to an isoparametric element in the physical

plane where element boundaries are curved isoparametric lines.
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Etemenf Number_
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6 3

(o) (b)

(c)
(d)

6
_5

®

V

Fig. 2. Numerical solutions are obtained for the test problems using a sector

method. A sector is defined by a combination of elements surrounding
a node or nodes. It becomes the finite cut-off zone of influence of

the interior node or nodes. The solution procedure is to construct

the sector matrix for each sector and to iterate by sweeping all the

sectors. This method provides a way to avoid the tedious data

handling in constructing the system stiffness matrix and facilitates

the treatment of boundary conditions.

Types of Sectors shown are:

(a) Six Triangular Elements, One Interior Node.

(b) Ten Triangular Elements, Two Interior Nodes.

(c) Six Triangular Elements, Seven Interior Nodes.

(d) Four Quadrilateral Elements, One Interior Node.
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Fig. 3. Three different grid systems for an elliptic boundary.

The system (a) has a larger number of nodes and better resolution near

the body, however, the structure of the elements is irregular. Table 1

shows the maximum percent error obtained for Problem 1 for the case of

Dirichlet boundary conditions. The grid system (a) has much larger

error despite the fact that it has more mesh points near the body.

This larger error comes from unfair treatment of the influence of

neighboring points. The unfair treatment results not only from the

irregular shapes of the elements but also from the use of several

types of sectors, i.e., sectors consisting of different number of
elements. The error increases as more types of sectors are used.

The fact that the error in grid-_system (c) is greater than that in

grid system (b) is a further indication of this effect. Only one

type of sector, which consists of six elements is used in grid

system (b), while two types of sectors, one with eight elements

and the other with four, are used in grid system (c). Note that

five different types of sectors are used in grid system (a).
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(b) Physical Plane

The mesh structure of Fig. 3(b) is used to study the effect of element

shapes. The shapes considered are equilateral or isosceles triangles,

as shown here, in addition to the right-angled triangles, as shown in

Fig. 3(b). The maximum errors at both the body surface and the outer

boundary are tabulated. The evaluation of the effect of the element

shape on the computational errors is based on the comparison of these

two errors. For case (i) with right-angled triangles, the error at

the body surface is much greater; therefore, the error due to element

shape dominates. For case (2) with isoceles triangles, the outer

boundary error dominates. For case (3) with equilateral triangles,

the two errors are nearly equal. In fact, the error distribution i_

almost uniform. Such a uniformity in error distribution is important
for any flow field computation.
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(a) Computational Plane

Fig. 5.

(b) Physical Plane

The effect of element size distribution was studied by comparing the

error for two grid systems shown in Fig. 3(b) and Fig. 5 respectively.

These two systems have the same structure; however, the distribution

of nodes in the system shown in Fig. 5 is not as uniform. The compari-

son of errors is given in Table 3. The error for the system of Fig. 5

is greater because the distribution of nodes deviates significantly

from the change of field variables.
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(a) Computational Plane

Fig. 6.

(b) Physical Plane

The error of the system with the triangular element is compared with

that with the quadrilateral elements. The interpolation functions in

both cases are of second order in the field variables, but differ in

their derivatives. The triangular element has a first order accuracy
while the quadrilateral element has a second order accuracy. The

results are summarized in Table 4. Even though the difference in error

in the stream function between the two cases is small, the difference

in errors in the velocities is appreciable. In comparing the errors

in velocities, it may be more informative to examine the maximum

deviations from the exact solutions. This maximum deviation is found

to be of 0110 -4 ] per unit free stream velocity for the quadrilateral

element and 0[10 -2 ] for the triangular element.
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Fig. 7. Optimum mesh system -- submerged elliptical

cylinder nesr a free surface.

Fig. 8. Optimum mesh system - cylinder of irregular shape.

Two methods of numerical transformation into a set of orthogonal

coordinates have been developed to generate an optimum mesh system which

meets the guidelines listed above. Figs. 7 and 8 show examples of mesh

systems generated.
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Table I. Effect of Mesh Structure

Problem : Problem I, Fig. 1

Element Type : Triangular Element

Mesh System : Fig. 3

Outer Boundary : Uou t = u + 0.75
o

Mesh System (a) (b) (c)

% Error 29.4 0.979 1.64

Table 2. Effect of Element Shapes

Problem : Problem I, Fig. l

Element Type : Triangular Element

W' _ ISORIGINAL _., _,

OF POOR QUALITY

Case

Mesh System

E1 ement Shape

% Error

near body

% Error at

Outer Boundary

u
out

(a) _ (b)

Fig. 3 (b)

Right-angled

Triangles

0.979

0.363

u +0.75
o

i

Fig. 4

Isosceles

Triangles

0.254

0.363

Uo+0.75

(c)

Fig. 14

Equilateral --

Triangles

0.172

0.174

o

374



Table 3. Effect of Element Size Distribution

Problem : Problem I, Fig. 1

Element Type : Triangular Element

Number of Nodes : 13 x 13

Outer Boundary : Uou t = u o + 0.75

Mesh System% Error

Fig. 3CD)

0.979

Fig. 5

6.652

Table 4. Effect of Element Type and Interpolation Functions

Problem : Problem I, Fig. 1

Number of Nodes : 16 x 16

= U + ]I
Outer Boundary : Uout o

% Error

Maximum

Deviation

Element Type

Mesh System

Stream Function

u-Velocity

v-Velocity

u-Velocity

v-Velocity

Triangular

Fig. 3(b)

0.856

34.95

33.98

0.010

0.068

Quadr i iat er al

Fig. 6

0.710

1.435

1.096

0.0004

0.0004
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SOME ASPECTS OF ADAPTING COMPUTATIONAL MESH

TO COMPLEX FLOW DOMAINS AND STRUCTURES

WITH APPLICATION TO BLOWN SHOCK LAYER

AND BASE FLOW

C. K. Lombard, M. P. Lombard, G. P. Menees, and J. Y. Yang
PEDA Corporation

Palo Alto, California 94301

The present paper treats several practical aspects connected with

the notion of computation with flow oriented mesh systems. Simple,

effective approaches to the ideas discussed are demonstrated in current

applications to blown forebody shock layer flow and full bluff body

shock layer flow including the massively separated wake region.

The first task in constructing an adaptive mesh is to identify the

gross flow structures that are to be captured on the mesh and to work

out a grid topology that conforms to them. Among the properties the mesh

topology ought to admit are both computational accuracy and algorithmic

compatibility. Both these properties are served by grids that feature

large connected segments of natural or computational boundaries fitted

by mesh surfaces or curves of constant coordinate. But it is neither

necessary or always desireable that the entire surface of a particular

boundary feature be fitted by a single surface segment of one family

of coordinates. For accuracy, convenience, and particularly from the

point of view of modern algorithms that embody such features as vector

organization, spatial splitting, and implicit solution, it is very

desireable that the mesh be composed of identifiable continuous grid
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lines, not necessarily of homogeneous coordinate type, that run from

boundary to boundary.

These notions are illustrated in the application to high Reynolds

number full bluff body flow in axisymmetry. Here the basic structure

of the turbulent flow is well known, Figure I. The computational mesh

that we have adapted to the flow is shown in Figure 2.

We note that in the mesh shown the computational boundaries -

axis of symmetry, bowshock, body, and outflow plane are all fitted by

continuous grid lines. The mesh is so constructed as to be flow aligned

over the four principal regions - forebody shocklayer, base recircula-

tion, outer inviscid wake, and inner turbulent viscous wake. We note

the wrap around mesh provides continuity of the boundary layer and

shear layer in the aft expansion zone. The continuity of the mesh

coordinate topology is broken in the recompression zone which embeds

a saddle surface of the turbulent flow solution at the interface of

the recirculant base flow and downstream viscous wake. The singular

topology of the mesh in the base recompression zone is illustrated in

Figure 3. The viscous wake core box of the mesh, which provides con-

tinuity across the viscous-inviscid wake shear layer, can be regarded

as a separate sheet of the topology with a cut taken along a line from

the singular point down through the recompression zone to the wake axis.

The cut forms part of a set of construction lines embedded in the

mesh, Figure 4. It is central to the method described that these lines

which largely define the base mesh structure are also representative

of the flow structures which the mesh is to fit. Thus in the approach

presented here the construction lines serve the role of supplemental +_,.l
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imaginary boundaries along which mesh nodes are distributed according

to the usual criteria on ordinary boundaries. The resulting bounded

domains can then be filled in with computational grid by any of a large

variety of means, for example 1'2'3'4

The particular grid shown in Figure 2 is quite adequate in concept,

though not optimized in detail, and was simply constructed in a single

pass using one dimensional distributions along straight coordinate lines

between boundary points. Where non-uniform distributions have been

required they have been conveniently accomplished using a universal

stretching function due to Vinokur 5. In the program, for the stretching

function as we have adapted and use it, the total interval along the

coordinate line and the (approximate) first mesh spacings from either

end of the interval are specified. The function then returns the dis-

tribution between boundary points. As convenient, the stretchings are

done variously in X, Y, or S (arc length). The actual X and Y coordinates

of mesh points are then found by the functional relationships of points

on the given coordinate curve, which of course can be piecewise defined.

Where fictitious boundary lines are to be embedded in the mesh, actual

boundary points are defined on the connecting coordinate lines at half-

first-mesh-cell intervals away from the fictitious lines.

A virtue of meshes constructed of distributions along analytically

defined coordinate curves, and particularly straight lines, is that

differential displacements of boundary points are readily functionally

transformed through kinematic relations into corresponding displacements

of the intervening grid points so as to leave invariant the relative

distributions of mesh points along the given coordinate curves. For
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the mesh shown in Figure 2, we presently use this property to analyt-

ically deform the outer flow portion of the mesh in relative conformity

with the moving, fitted bowshock.

In a similar manner it is intended in future work to differentially

adapt the interior base mesh to the changing flow solution by moving

the underlying construction lines. A central requirement to do this is

to define relationships tying the construction lines to the base flow

solution. In this regard it is intended that the X coordinate of the

mesh singularity correspond to the axial location of maximum wake pres-

sure. Presumably, the Y coordinate of the singularity which lies on

the construction line through the viscous-inviscid wake shear layer ought

to be determined from a fit to the axial velocity gradient.

Along the same lines, however, we have developed an adaptive mesh

for the blown forebody shock layer which is intended to represent flow

over an ablating body. Here we wish to distribute points in predetermined

ways in the blown layer, the shear layer interface, and in the outer

flow region. In this case a construction line demarking the interface

between the blown and outer flow regions can readily and unambiguously

be fitted to the zero of the stream function based on mass flux and this

is what we have done.

We note in connection with the blown shock layer that the associated

flow has regions of steep gradient in density, velocity, mass flux, and

temperature and that these properties by no means vary together. We

take it that an accurate calculation ought to resolve all these features.

Thus we think for this application a mesh distribution approach based

on the integral of gradient of a single flow property such as Dwyer 6
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has demonstrated is not evidently optimum. A similar distribution

based on weighted gradients is certainly feasible but this would appear

to be more tedious to implement than a compromise ad hoc distribution

tied to key features of the flow structure as we have done. In the

paper we shall present curves showing the variation of relevant flow

properties across a blown shock layer and show how the simple ad hoc

distribution approach we use results in satisfactory resolution of all

properties.

l •
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An Analytical Transformation Technique for
Generating Uniformly Spaced Computational Mesh

Youn H. Oh

Hughes Aircraft Company

Abstract

An analytical transformation method which can map arbitrary physical coordinate
grid distribution into desired computational coordinate with uniform grid distri-
bution is derived. The transformation function and its higher derivatives are
differentiable. Salient features include; I) precise control of grid sizes, 2)

_ more than one location of clustered grids, 3) exact positioning of particular

_t....j computational nodes in the physical plane, 4) ensuring several patches of uni-
formly spaced grids in the physical plane for the higher accuracies (such as at
the boundaries), etc., while keeping the variation of grid spacing continuous to
avoid numerical instability.

Work was performed while author was employed by Old Dominion University
Research Foundation under NASA Research Grant NSG I087(J. E. Harris,
Technical Monitor, High-Speed Aerodynamics Division, NASA LRC)
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TRANSFORMATION FUNCTIONS

y = Coordinate in physical plane.

n : Coordinate in computational plane.
Nodes are uniformly spaced.

Parameters Specified

N = Number of pivot

npi (i:1, 2, ---N)

ei (i=1, 2, ---N)

Program

"FI XED"

Computed

dn

Bi (i=I, 2, ---N)

i=I

V

v : X I i ]

" 2--T- - aY-_. rain - n erfc _ nmin . np i

(° °oin)"Yoio

N

a_ 2
i:l

_i y

1
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BUILDING BLOCKS OF TRANSFORMATION FUNCTION f(n)

np i

7

a. (i=1, 2,---N)
1

(i=1, 2, ---N) = "Pivot points," particular specifiable values of n where
f'(n) assumes local maxima.

= 2.326, a convenient constant for the scaling _i"

= "Width parameter," specifies width in _ in which 90 percent
of grid size variation takes place around the pivot npi.
_<0 specifies increasing grid sizes, and _>0 specifie_

decreasing grid size at pivot npi.

(i=O, 1,2---N) : step heights for the pivots, which decides the ratio between
the sizes of node spacings in Yi on both sides of the pivot.

o

f(n_

-0.58 i

-B,

_Pi

"°'°sB_,n" "gs_i

0.5Bi

f(n) : T_' erfc I 2"326 (n - npi) I " si ' when _ >0=---_- i

(a)

0,9S_ i

0.05£ i
..J b

npi n

Bi I =.326 ,pi) lf(n) " T erfc _ (_ . , when _i < 0

(b)
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THE EFFECTS OF CONTROL PARAMETERS, EXAMPLE I
V

Grids are clustered only at nmin with a single pivot.

Specified Parameters

Total node points = 51

Number of pivots = I

np I = 0.6

_I = -0.2

B
O = 0.I

B1 = 0.4

Both ends of physical plane nodes have constant spacing.

\\
\
\\

NO. BF GRII) =

5( d)= B.E{B[4
Fl(d)= -B. 2B_I

B(d)= B.HBB

I Nil. [IF PI VIII= I BPI--- ?
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EFFECTS OF CONTROL PARAMETERS, EXAMPLE 2

Grids are clustered only at qmax

§pecified Parameters

Total node points = 51

Number of pivots = I

npl = 0.3

_i = 0.6

= 1.0
0

61 = 0.9

with a single pivot.

Grids near Ymax are uniform but not those near Ymin"

_(_)

NB. I]FGRID =

5(d)= B.3BB

B(d)= B.BBI_

B(d): B.gI_B

{I Nil.nF PIVnT: I BB-- I.BBBBB
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EFFECTS OF CONTROL PARAMETERS, EXAMPLE 4

Figure demonstrates smooth variation of grid sizes (large l_I compare to

pivot spacing) with multi-pivots.

Specified Parameters

Total node points : 51

Number of pivots = 7

BO = 0.05

np I = 0.1, _1 = -0.14, B1 = 1.

np 2 = 0.14, _2 = 0.14, B2 : I.

= -0.14, B3 = 1.
np3 0.36, _3

rip4 0.4, _4 0.14, _4 i.

np5 = 0.62, _5 : -0.14, B5 = I.

rip6 = 0.66, _6 = 0.14, 86 = I.

nP7 = 0.88, _7 = -0.14, B7 = 1.

NO. DF GRID = El NO, OF PIVOT= 7 BB-- _.BEBBB

5(d): I_.IBB B.IH_] B.35B B.HBB B.57B B.B6B B.BB_

R(d)= -B.IHB B.IH_-B.IHB B. IH_-B.IHB _.IH_-B. IH[_

5(d): I.BBB I.B;_B I.BBB I.BBB i,BBB L.B_B I.BBB
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EFFECTS OF CONTROL PARAMETERS, EXAMPLE 5

Figure demonstrates discontinuous variation of grid sizes (small I_l
compare to pivot spacing) with multi-pivots.

Specified Parameters

Total node points = 51

Number of pivots = 2

% = 0.1

npl = 0.6,

nP2 = 0.9,

ND. I]F GRID = SI

ll(fl)= -B. _B I -B. I_I_I

ND. DF PIVBI= _ BB= B. IB_gfl
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CONSTITUTIVE RELATIONS FOR THE
DETERMINATION OF B'S

riCk (k=O, 1, 2, --- K) = "Cluster Points," specifiable values of n which must
coincide with particular predetermined values of

Yck (k=O, 1, 2, --K) of corresponding k's. The values
nck (hence y_ also) may or may not necessarily be
node points. _k

Pk (k=O, I, 2, --- K) = Ratio between the immediately neighboring _y minima
and maxima at the cluster point k.

2K simultaneous linear algebraic equations for 2K unknowns, BO*, B2, B3 --- B2K
are solved by the program "FIXBY".

1 - Po

B1 = PO BO

L!!

[I °oI 2k-II - o ° _o - _](I - _k ) I- sign(_ I}
i:2

I sign(ai)l 8i]

- sign(a2K) 82k : 0, (k - 1,2,3,. .... K)

¢k mzn
)IfPO 2 [ T @! (_Ck)- 9! (nmin - sign(al)l

÷ " _i nmin
÷ i Ck nmin 8o i:2_ g _- 9i nck

- Isign(_i)l÷ll(nCk nmin)]Si

: V - V ,
• c_ • mzn

K
(k = 1,2,3 .... K)
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APPLICATION, EXAMPLE 1

The objectives were (1)

(2)

to transform the physical coordinate y in the
range of 0 _ y < 2.5 to computational coor-
dinate n in the range of 0 _ n _ 1.0;

to obtain grids clustered at y=O and y=1 with
the same order of minimum grid sizes and the

same rates of increase of grid spacing ay away
from y:O and y=l.0;

(3) to use a total of 41 nodes where y=O, 1.0; 2.5

which are nodes in the physical as v:ell as in

the computational plane (i.e., cluster points);

(4) to have grids near y=2.5 which are fairly uniform

Program "FIXBY" is used to compute BO' BI, B2, B3, with the specified input
values;

npi = 0.2, 0.425, 0.825

_i = -0.17, 0.17, -0.17

riCk = 0., 0.625

yc k = 0., 1.0

Pk = 0.0025, 0.0015

for i = I, 2, 3

for k= 1, 2

The choice of n_: decides the way in which the number of nodes are
partitioned into different regions and the choice of _i decides the ratio
with which the grid size varies.

Computed B's are

Bi = 0.011071747, 4.417627, 4.4220557, 8.5569778 (i=O, 1, 2, 3)
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BZ= 0.011Bqlqtlq
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APPLICATION, EXAMPLE 2

The objectives were to have (1)

(2)

(3)

(4)

a total of 41 nodes;

variable ranges of 0 _ y _ 8.0 and
0 _ n _ 1.0, respectively;

one interior clustering point at y=O; and

grids near y=O and y=8.0 which are
fairly uniform.

Inputs to program FIXBY were;

npi = 0.3, 0.7

_i = 0.17, -0.17 (i=1,2)

ncl = O. 5

YCl = 3

p = 0.25
1

Computed _'s were;

6 i : 8.5714166, 6.4285625, 13.095257 (i=O, 1, 2)
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ND. BRID = HI NB, CLUSTER= I

R(d): B.17BB_BB_ -_.17_

NB. PIVOT: 8B: B.EqlHI5519
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FLOATING GRID CLUSTER REGION

When pivots are sufficiently separated so that there will be a region of
"f(q) = constant" between every pivot (small I_I case) is a particular case.
A separate program "FLOAT" is programmed for this case. Floating the location
of clustering and varying the degree of clustering as well as locating new
clustering regions during the computation (of a finite difference solution
method) can be conveniently accomplished with this code. Figure shows a trans
formation of "FLOAT" code with a particular set of input parameters. "FLOAT"

redistributed)the uniform computational grids n in the physical plane from
yj[1) to yj(2 .

ND. Di" {LL/5"i'ER: q

H(JI= I 15 31 C:l
K(J): _ _ _ _l
L(d): 2 2 2 2
H(d]: R.SHR I!. 2119 g.2Ea n._ga

NO. _ GRID = _1
5(d)= H._HH
R(j)= -H.2HH
_(dl= B.2HH

HQ. DF PlYfll= I BE= R.]HHHH

V
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APPLICATION OF THE MULTIGRID METHOD

TO GRID GENERATION

Samuel Ohring

Computation, Mathematics, and Logistics Department

David W. Taylor Naval Ship Research and Development Center

Bethesda, Maryland

ABSTRACT

The multigrid method (MGM) has been used to numerically solve the

pair of nonlinear elliptic equations commonly used to generate two-

dimensional boundary-fitted coordinate systems. Two different geometries

are considered: one involving a coordinate system fitted about a circle and

the other selected for an impinging jet flow problem. MGM uses a nest of

grids from finest (upon which the solution is sought) to coarsest and is

based on the idea of using relaxation sweeps to smooth the error (equivalent

to eliminating high frequency Fourier components of the error). Thus most

of the computational work is done on coarser subgrids to eliminate longer

wave length components of the error. Two different relaxation schemes are

tried: one is successive point overrelaxation and the other is a four-color

scheme vectorizeable to take advantage of a parallel processor computer for

greater computational speed. Results using MGM are compared with those

using SOR (doing successive overrelaxations with the corresponding relaxation

scheme on the fine grid only). It is found that MGM becomes significantly

more effective than SOR as more accuracy is demanded and as more corrective

grids, or more grid points, are used. For the accuracy required here, it is

found that MGM is two to three times faster than SOR in computing time. With

the four-color relaxation scheme as applied to the impinging jet problem the

advantage of MGM over SOR is not as great. Perhaps this is due to the effect

of a poor initial guess on MGM for this problem.
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The multigrid method (MGM) [i] can numerically solve linear or non-

linear elliptic partial differential equations more rapidly than conven-

tional means of solution such as successive overrelaxation (SOR). MGM can

be applied to the numerical solution of partial differential equations not

amenable to numerical solution by fast direct matrix solvers such as

diagonal decomposition. Thus it was deemed desirable to apply MGM to the

numerical solution of the system of nonlinear elliptic equations commonly

used to generate boundary-fitted coordinate systems, especially when the

number of grid points is large. The standard elliptic equations for a typical

mapping, shown schematically in Figure i, are

Ll(X,y) = _x_ - 2Bx_n + yx + J2(px_ + Qx n) = 0nq (i)

%.2

L2(x,Y) = _yc_ - 2ByCq + YYnn + j2(py_ + Qyn) = 0 (2)

where

_ = x2 + 2
n Yn

y = x2 + 2
Y_

(3)

and P and Q are functions of _ and n. Dirichlet conditions are specified on

all boundaries of the computational space including the interior slit (which

maps to the body in the physical space). Each side of the slit has a set of

Dirichlet data with a common value for each of the endpoints of the slit.

The basic idea of MGM is to do most of the computational work on coarser

corrective grids containing far fewer points than the finest grid upon which

the solution is sought. The grids form a nest, each coarser grid having

twice the mesh spacing in each coordinate direction of the previous finer

grid. In Figure 2 which represents the Full Approximation Storage scheme of

[i]: u = (x,y), L = {LI I such that Eqs. (I)and (2)become Lu = F = {_)L2

1 _ k _ M (k representing the k th grid with M the finest), _ = (x,y) on the

boundaries of the computational space (Dirichlet values so that A is an

[i] A. Brandt, Math. of Com@., Vol. 31, No. 138, April 1977, pp. 333-390.
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identity operator) and superscripts refer to discretized quantities on the kth

grid. (All operations involving _ in the flow chart can be ignored, since the
Dirichlet conditions are constant on all the grids.) The main idea behind MGM

is that relaxation sweepsare a smoothing process which eliminate the highest

frequency Fourier componentsof the error on any grid. First, starting with
an initial guess for the solution, several sweepsare carried out on the

finest grid to eliminate high frequency componentsof the error. The smoothed
out error is represented by the residual fM = LMuM_ LMuM and the correction

uM-uM (where _ is the exact discrete solution on the finest Mth grid). The

residual, consisting mainly of longer wave-length Fourier components, is dealt

with by solving its coarser-grid approximation

LM_I_- 1 LM-I M-I M M-I fM (4)- IM u = IM

for UM-I, which is represented by _k for k =M-I in the lower right box of
k-i meansinterpolation of a quantity from the kth

Figure 2. The symbol I k
grid to the (k-l)st grid. Eq. (4) is solved in the sameway as the original

equation on the finest grid. If solution of (4) is obtained after several
relaxation sweeps, the coarse grid approximation UM-I M-I M- IM u to the smoothed

M M M _M . M-I M-I uM) which
out function uM-u M is added to u • That is u ÷u + IM_llu - IM '

M

is the expression in the lower left box for k =M. The new u is a better

approximation to the solution UM and is the starting point for more relaxation

sweeps for the original set of Eqs. (i) and (2) on the finest grid. If conver-

gence is obtained, the process is complete; if not, the process returns to the

coarser grid to sweep the residual equation again. If it doesn't converge

after a few sweeps, then the next coarser grid is used to eliminate long wave

length errors for the residual equation, etc. Each residual equation has a

corresponding residual equation and correction on the next coarser grid. (The

residuals were weighted locally as in [I].)

Figure 3 shows computer drawn body-fitted coordinate systems generated

to a specific accuracy using MGM and SOR (the two coordinate systems coincide).

The relaxation scheme used was successive point overrelaxation. According to

the notation used in Figure i, m and n are 81 and 21, respectively; the slit

end points are (_33,n13) and (_53,n13), respectively; (x_,Y b) _ (-8.4, -8.0)
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and (Xr,Yt) = (7.6, 0.0); Ax = .2 and &y = .4; &_ = An = 1; and the body is

a circle of radius one centered at (x,y) = (0, -3.2). P and Q were set to

zero in Eqs. (i) and (2). An experim@ntally determined, essentially optimum

overrelaxation factor of 1.7 was used in the successive point overrelaxation

sweeps in both MGM and the SOR method. All coarser corrective grids contain

grid points on the slit. The initial guess for x(_,_), y(_,_) in the computa-

tional space is obtained by extending the Dirichlet data at the outer boundarie_

throughout the space except at the slit, where the body Dirichlet data are used_

The convergence criterion for the solution of Eqs. (i) and (2) was that both

e2-error norms (one for each equation) be less than an input value I]EIIL2"

(This will be called satisfaction of IIEIIL2.) For Figure 3, IIEI[L2 = .001.

To satisfy this criterion, MGM used 32.5 WU and 16.08 CP seconds compared to

66.0 W]J and 22.17 CP seconds for SOR. (A work unit (WU) is the equivalent of

one SOR sweep on the finest grid, and CP seconds refer to central processor

seconds used on the Texas Instruments Advanced Scientific Computer (TI-ASC).)

For IIEIIL2 .01 MGM used 20 WU compared to 29 WU for SOR; CP time was the

same for both methods (due mainly to the additional computational work in

computing residuals in MGM). The results show that the effectiveness of MGM

increases (compared to SOR) as the error norm decreases. This is consistent

with the fact that the remaining longer wave length errors are eliminated more

slowly using SOR. The parameters 6 = .3, _ = .3 were used to control the flow

of MGM. The parameter _ determines the convergence test on each grid and the

parameter _ determines how fast the convergence must be (how fast the high

frequency components are eliminated) on each grid. Whenever

< (IIEIIk i+i/ k )i kt h
L2 ) (IIEII on a grid MGM will then process on the coarserL 2

(k-l)st grid with an error norm to be satisfied equal to _(IIEIl k )i+l (Super-
L2

scripts i,k refer to the ith relaxation sweep and the kth grid, respectively.)

These parameters are used as in [i], have a range (0 <_ <l; 0 < _ <I), and

greatly influence the performance of MGM. The present choice is not necessarily

optimum but was the best of a number of choices tried in the unit square.

Figure 4 shows a computer drawn body-fitted coordinate system, similar

to Figure 3, generated with MGM and satisfying IIEIIL 2 001 The grid

parameters are (see Figure I): m and n equal to 129 and 81, respectively;
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slit end points of (_49' n49) and ($81' n49)' respectively; (x_,y b) =

(-7.68, -8.0) and (Xr,Y t) = (7.68, 0.0); Ax = .12 and Ay = .i; AS = An = I;

and the circle of radius one was Centered again at (0, -3.2). To satisfy

= .001 MGM used 21.863 WU and 70.67 CP seconds compared to 102.0 WUIIEIIL2
and 217.83 CP seconds used by SOR. This represents a significant saving of

computer time by MGM. To satisfy IIEIIL2 = .01 MGM used 10.863 WU compared

to 17.0 WU used by SOR with CP time essentially the same. These results,

along with those for Figure 3, show that MGM is more effective, compared to

SOR, when more corrective grids are used and more accuracy is required.

Figure 4 has five corrective grids and Figure 3 has three corrective grids

(including the finest). The parameters _ = .03 and _ = .2 controlled MGM

for Figure 4. Choosing smaller 6 and _ makes it more likely that all the

coarser corrective grids will be used, which is desirable.

Figure 5 shows a computer drawn body-fitted coordinate system generated

using MGM and satisfying IIEIIL2 .001. SOR was also used to generate this

grid and is in excellent agreement with MGM. The geometry is motivated by

an impinging jet flow problem that is planned to be run on this grid. The

flow from the channel interacts with the solid body on the right. The

computational space has the same shape as the physical space except that

the body is replaced by a slit. Excluding the channel, the grid consists of

137 points in the horizontal direction by 97 points in the vertical direction.

The grid for the channel itself consists of 25 horizontal grid points by

33 vertical grid points. The slit (and body) are 49 grid points long.

Corner points on the body and channel have been excluded from the grid.

Exponential grid spacing was used along various parts of the horizontal and

vertical boundaries of the grid. in an attempt to preserve this boundary

spacing in the grid interior non-zero P and Q were used. Although grid lines

are still bent near the boundaries, they are not bent as much as when P = Q = 0

was tried. To compute this grid (which had 4 corrective grids, including the

finest) MGM was "vectorized" on the TI-ASC since it is a parallel processor

machine. To accomplish vectorization, which cut computing time by a factor of

six, a four-color relaxation scheme was used (i.e., even points of even rows

were relaxed simultaneously; odd points of even rows; etc.). With this scheme
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MGM used 82.781 WU and 45.57 CP seconds to satisfy IIEIIL2 .001 when using

an overrelaxation factor (RF) of 1.8 on the finest grid and relaxation factors

of 1.6, 1.4, and 1.2 for the progressively coarser grids. (Varying RF in this

way improved MGM's performance.) SOR (with the four-color scheme) used 170.0

WU and 76.68 CP seconds using a relaxation factor of 1.8, which is about

optimum for this SOR. MGM used 60.641 WU and 36.67 CP seconds to satisfy

IIEIIL2 .001 when RF's of 1.6, 1.4, 1.2, 1.0 were used on progressively

coarser grids (with 1.6 used for the finest grid). With these RF's MGM used

26.016 W-U to satisfy IIEIIL2 Ol compared to 82.0 WU used by SOR with

RF = 1.8. The parameters _ = .05, n = .95 were used for MGM which was

divergent for _ < .9. MGM should perform better with a better initial guess

than used here. (The horizontal straight lines in the initial guess were

discontinuous at the right-most boundary.)

V
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GRID EVOLUTION IN TIME ASYMPTOTIC PROBLEMS

Man Mohan Rai and D. A. Anderson

Iowa State University

Ames, Iowa

INTRODUCTION

Coordinate system selection is an important consideration in

the time asymptotic numerical solution of any fluid flow or heat

transfer problem. In solving such transient problems, the physical

domain is usually transformed into a rectangular region with bound-

aries coincident with the physical boundaries. Once this trans-

formation is completed, the transformed equations of motion are

integrated until steady state is attained.

Most methods of generating systems of coordinates used in

numerical solutions have been developed for elliptic problems. In

these methods, the physical domain boundaries are known and the

coordinate mesh is determined initially. Generally, the geometry

of the mesh is not changed during the computation. Probably the

most well known of these methods is the one developed by Thompson

et al. (I) in which the transformed coordinates are obtained as a

solution of Laplace's equation in physical space. A number of

other investigators (2, 3, 4) have developed schemes which can be

used to generate appropriate coordinate systems using the same

general idea.

.L
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Unfortunately, the solution of a separate elliptic equation

is not conveniently included in the solution of a time-dependent

set of equations. Hindman et al. (5) solved the two-dimensional time-

dependent Euler equations with a truly adaptive grid scheme. The

grid motion in time was generated by taking the time derivative of

the governing differential equations of the coordinate mapping which

was the same as that developed by Thompson. This provided the neces-

sary grid speed equations which were then integrated to obtain the

grid motion as a function of time. Hindman's work did not consider

techniques which might be used to modify the location of the interior

points depending upon the local solution. The interior point motion

depended solely upon boundary motion.

A technique for locating mesh points according to local flow

information was presented by Dwyer et al. (6). This technique is

similar to that used by Olson (7) and involves redistributing the

mesh points at the end of any number of integration steps. This

method does not permit a simple time integration of a differential

equation similar to the equations of gas dynamics for the motion of

the mesh points. It is the purpose of this paper to introduce a

new technique which provides a simple way of moving the mesh points

in physical space and reduces the error in the solution relative to

that obtained using a fixed mesh.

Pierson et al. (8) have also worked on the generation of grids

which minimize error, but their technique involves the solution of

a minimization problem. The extension of such a method to higher

dimensions with the accompanying increase in the number of mesh points



E

is not feasible due to the large amounts of computer time necessary

to solve minimization problems. The method to be discussed in this

paper is very simple in application and takes only a fraction of the

time necessary to solve a minimization problem.

k_J

THE METHOD

To describe the basic idea employed in this paper, we consider

transient problems in one space dimension. Let the physical space

coordinates be x and t and let the computational space coordinates

be _ and T where

T = t

= _(x, t)

We require the calculation of the absolute value of the deriv-

ative (lu_I) of some representative physical quantity (u) such as

velocity, pressure, or temperature and the average value of the same

derivative (lU$1av) for all mesh points. Given a certain number of

grid points, truncation error can be minimized by allocating a number

of points to the regions of large gradients and fewer points to the

regions of small gradients. For an equispaced grid, a relocation of

points in order to minimize error can be carried out. This can be

achieved if points at which lu_l is larger than lU_iav attract

other points and points at which Ins1 is smaller than lU_lav repel

other points. In other words, every pcint induces a velocity at

every other point, the magnitude and direction depending upon the

local 'excess gradient' It is logical to assume that the further a

point A is from a point B, the smaller the effect of point A on B.
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This suggests that a i/r n law should be used.

siderations, it is possible to write

From the above con-

(_i)T = K n _ _ av

Lj-_+I ri, j j=l rn,j

v

i = 2,3 . (N-l) (I)

(x) i -- (Ei)T
(2)

where i is the point at which the velocity is being determined,

'N' is the total number of grid points, ri, j is the distance between

points i and j in ($,T) space and 'K' and 'n' are constants.

The value of K can be determined if the maximum velocity that any

point can achieve is specified. Convergence of the grid to a steady-

state configuration is obtained by specifying a maximum value for

K (Kmax).

Strong analogies can be found between the present formulation

and treating the grid points as point electrical charges whose indi-

vidual charges are proportional to the local 'excess gradient'

The charges move so as to minimize the quantity

E° I,u j ,O lavl2

the minimum value of E being zero.
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The collapsing of two computational space points into one physical

space point is not possible because of two reasons:

(a) The driving force g,

g = ]u_l- lU_lav
(3)

becomes negative when two points get very close and, hence, the points

begin to repel each other.

(b) The term _x in Equation (2) gets very large as two points

get very close. Hence, for a finite (_i)T, (xT) i tends to zero; i.e.,

the closer two points get to each other, the more difficult it becomes

for them to move toward each other. However, Equation (2) does not

prevent extreme stretching of the mesh in physical space, thus giving

rise to errors in the calculation of the transformation metrics. The

details of preventing extreme stretching for the problems solved in

this paper are presented in the section on results.

In the above discussion the driving force g is defined in terms

of local and average first derivatives. A better formulation would be

one in which g is defined in terms of quantities which are more

representative of truncation error. One such quantity is the third

derivative of u instead of the first derivative. The appropriate

choice depends upon the order of the method being used and the problem

itself. The flexibility in choosing the driving force and the quan-

tity to be minimized is a particularly attractive feature of the

current scheme.

Two constants K and n appear in Equation (i) and a third one,

K defines the maximum value that K can assume. The constants
max
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K and K together determine the grid speed When K is less thanmax

Kmax, the grid speed is determined by _ alone and when K is greater

than K the grid speed is determined only by K • At present thesemax' max

constants are chosen empirically. In choosing these constants one

should bear in mind that very large values of K result in grid
max

oscillations which in turn result in longer convergence times, and very

small values of K result in low grid speeds and hence, once againmax

longer convergence times are observed. The constant K is calculated

by knowing the maximum velocity that any point can achieve in the com-

putationalspace I(_i)T]max" The rules that govern the choice of

I(_i)Tl are the same as those that govern the choice of Kmax
max

A variation of the constant 'n' between 1 and 8 did not make any

difference in the final grid in the one-dimensional case studied and a

small difference in the two-dimensional case. The number of itera-

tions for convergence increases slightly when larger values of n are

used. However, larger values of n imply a smaller range of influence

for any given point. Consider a value of n,

2
n -

log(2)

When r = 2,

---ix- = 10 -2
n

r

4]4

This implies that only points adjacent to a given point make a signif-

icant contribution to the velocity of that point. Hence, Equation (I)

V



becomes

The use of Equation (4) instead of Equation (I) greatly speeds up the

grid generation process.

EXTENSION TO MULTIDIMENSIONAL PROBLEMS

The method can be extended to problems in two and three space

dimensions without any difficulty. In particular, for a problem in

two space dimensions, let the physical coordinates be given by (x,y,t)

and the computational coordinates by (_,N,T) where

T = t

= _(x,y, t)

n = n(x,y,t)

We now require the calculation lu_l

lU_lav for every row of points and

as in Figure i.

and lunl for every point and

iu lay for every column of points

The grid speed equations are given by

lu lav l
M [(_i,j)T = K I
= k=i+l rn

k=l
n

r
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(Di,j)T

N M

E=J+I rn

lUDIavkl

(5)

j-I

l U0avkIj
%=1 rn

r = _(i-k) 2 + (j_%)2

where KI,K 2 and n are constants, N the number of points in the

direction and M the number of points in the U direction. The

values of KI and K2 can be determined by specifying I(_i,j)Tlmax

and I(Di,j)TI nax respectively. Grid convergence can be achieved by

specifying (Kl)ma x and (K2)ma x as in the one-dimensional case.

We also have the relationships

(_i,j)T = (_xXT + _yYT)i,j

= X + DYYT)i(Di,j)T (nx T ,j

(6)

which yield

4]6

(xr) i,j =
[ (ny)i,j ($i,j) I - ($y)i,j (Di,j) T1



[(_x)i,j (Di,j)T - (nx)i,j ($i,j)T]

(yT)i,j = j

J = Cxny - BxCy

(7)

From Equation (7) it can be seen that the collapsing of mesh points

and the overlapping of grid lines is again prevented as in the one-

dimensional case.

Points lying along a constant

gential to this line by specifying

n line can be made to move tan-

(_i,j)T to be zero for all these

points. A similar procedure can be adopted for constant $ lines.

This facilitates the movement of points along surface boundaries, etc.

However, this type of unnatural constraint on the velocity of points

leads to a slightly distorted grid as shown in Figure 2. A more

natural way of making points move tangential to boundaries is to

specify periodic boundaries and use the pseudo points outside the

region of interest also to calculate the grid speed. This procedure

of calculating the grid speed results in the grid shown in Figure 3.

The distortions present in Figure 2 are absent in Figure 3 and the

grid is seen to be smooth and uniform. The grids shown in Figures 2

and 3 were generated using a known solution to the two-dimensional

transient, linear, viscous Burger's equation.
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RE SULTS

The first problem solved using the present grid generation

technique was the one-dimensional unsteady viscous Burger's equation

u t + uu = PUxxx

with the initial condition

(8)

u(0,x)
1 X= 0

0 0 <X <i
(9)

and the boundary conditions

u(t,O) = 1

u(t,l) = O

This problem has the steady state solution

_ Re

u = u tanh [-- (l-x) I
2

(lO)

(11)

where

Re : i/p

ORIGINAE PAE IS

OF PO.,,, (-_\Jf.!.7i7

and u is the solution of the equation

(12)

418

u-I
- exp {--uRe }

u+l (13)

The slope of the steady state solution at the right end increases and

that at the left end tends to zero as Re increases.
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McCormack's method was used to integrate Equation (8) and three

point central differences were used to calculate the metrics of the

transformation. The stability limit for McCormack's method for this

problem was determined using the empirical formula given by Tannehill

et al. (9).

Results are presented for various values of Re in Figures 4-8.

In all cases the steady state results using an adaptive grid and those

obtained using an equispaced grid are compared with the exact solution.

In Figure 4 results for Re = 1 are shown. The errors are very

small ( < 0.04%) in both cases but the peak error without an adaptive

grid is about 1.82 times the peak error with an adaptive grid. In

Figure 5 results are presented for Re = 2. The ratio of the peak

errors is now about 4.90 and a significant improvement in accuracy is

seen. However, in Figure 5, the adaptive grid shows a slightly larger

error in the region 0 < x < 0.2. This is due to the fact that the

second point in the grid has moved to the right a substantial distance

resulting in a higher error in this region.

Figure 6 presents results for Re = 3. The second point in this

case moves so far to the right that the truncation error in calculating

the transformation metrics in this region swamps the entire solution

resulting in a solution that is worse than the one obtained using an

equispaced grid. In order to prevent extreme stretching of the grid

it is necessary to include a measure of the truncation error intro-

duced in calculating the transformation metrics into the driving

force g,
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g = Ix%I- IX_lav + e { lu_l- lU_lav} (14)

where e is a constant. Since x_ is greater than zero and u_ is

less than zero in this problem, Equation (14) can be written as

g = x_ - (X_)av - e _$ - (U_)av } (15)

Since the grid converges when g is a constant over the entire region,

the transformation for the converged grid can be shown to be

= 1 - fu - (l-f)(l-x) O< f < 1 (16)

where f is a constant. Hence, an equivalent way of preventing ex-

treme stretching is to define u as

u = fu + (l-f) (l-x)
(17)

and the driving force g as

g = lu_ I -I_ Iav (18)

The error curve obtained for Re = 3 and f = 0.7 is also shown in

Figure 6. A substantial decrease in error is seen, the ratio of the

peak errors being about 3.80. Figures 7 and 8 present results for

Re = 5 and Re = I0 respectively. In both cases a smoothed form of

the solution as given by Equation (17) is used. The ratio of peak

errors is about 2.23 for Re = 5 and 2.13 for Re = I0. Figure 9

shows the transformation obtained for the case Re = 3, f = 0.7.

The uniform nature of the transformation is apparent.



A better measureof the total truncation error at a point (e) is

e = dx 2 u (19)
XXX

!

which can be approximated in this case as

2 (2o)
e = dx u

x

which yields

e = u_/_ x

Equation (21) suggests a driving force of the form

(21)

(22)

g = lu / ×l - lucl$xlav

Results of using such a driving force for the case Re = 3 are pre-

sented in Figure i0. The errors obtained are comparable to the ones

obtained using an optimal f. However, the advantage in using this

new form of the driving force lies in eliminating the empiricism

required in determining the optimal f. Similar results were obtained

for all Re < 5.0. Excessive stretching was once again observed for

higher values of Re, indicating the inaccuracy in estimating the

error. The analysis and results presented in this and the preceding

paragraph show that the method is limited only by the accuracy with

which the total truncation error at a point can be estimated.

The second problem solved was the two-dimensional unsteady,

linearized, viscous Burger's equation

+ u = _(Uxx + u ) (23)
u t + ux y YY
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in a square domainwith the initial conditions

u(x,O,O) = I +
1 - exp(Re(x-l))

(I - exp(-Re))

u(0,y,0) = i +
i - exp(Re(y-l))

(i - exp(-Re))

(24)

u= 1 otherwise

where

Re = I/_

and the boundary conditions

u(x,0,t) = 1 +
i- exp (Re (x-l))

(i - exp(-Re))

u(O,y,t) = 1 +
I - exp(Re(y-l))

(I - exp(-Re))

(25)

(26)

u(x,l,t) = i

u(l,y,t) = 1

This problem has the steady state solution

(i - exp(Re(x-l))) (I - exp(Re(y-l)))
u = i+

(i - exp(-Re)) 2

(27)
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McCormack's method was used to integrate Equation (23) and three

point central differences were used to calculate the metrics of the

transformation. To prevent excessive stretching of the grid a smoothed

version of the solution (])



i

u = fu + (l-f) (4-x-y)/2 0 < f < I
(28)

is used to calculate the driving force.

Figure ii shows the grid obtained for Re = 5 and f = 0.3.

The error is calculated at the points shown in Figure ii and a linear

interpolation is used to calculate the error at the points correspon-

ding to the equispaced grid. The results are presented in Figures 12-

15, at each y station. The adaptive grid yields slightly higher

errors in the low gradient region as in Figure 12 and gradually pro-

gresses to much lower errors in the high gradient regions as in

Figure 15. The increases in accuracy are not as high as in the one-

dimensional case, the main reason being the inaccuracy in establishing

the local truncation error. One complication that exists only in two-

and three-dimensional problems is the appearance of cross derivative

terms in any estimate of the local truncation error. The absence of

cross derivative terms in the present formulation of the grid genera-

tion scheme is felt particularly at the point

Figure 12. This point has a large value of

u resulting in mesh clustering only in the

x = 0.8, y =.0.2 in

u and a small value of
x

x direction. However,

Y

and u are by no means small and hence due to
the terms Uxyy xxy

large Ay in this region give rise to large errors. Future work

with two-dimensional problems will require that the influence of cross

derivative terms be included in the generatien of grids.
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TIME REQUIREMENTS

The number of integration steps required for convergence is always

greater with an adaptive grid because of the lower values of maximum

allowable time steps associated with mesh clustering. The ratio of the

number of steps required with and without an adaptive grid goes all the

way from 3.4 for Re = i0 to 1.4 for Re = 1 in the one-dimen-

sional case and takes on a value of 2.3 in the two-dimensional case.

However, time estimates will be given only _n a per integration step

basis. In the one-dimensional case the generation of the grid and re-

calculation of the transformation metrics takes less than i0% of the

time taken for integration. In the two-dimensional case, the genera-

tion of the grid takes 25% and recalculation of metrics takes 70%

of the time taken for integration. One of the reasons for the

excessive time taken for the calculation of metrics is the presence

of second derivatives like Sxx' _yy Dx_x, and all of which need
, Dyy,

to be determined numerically. The absence of these second derivatives

greatly speeds up the calculation of metrics. Furthermore, if the

problem requires the recalculation of metrics even without an adaptive

grid, as in shock fitting programs, the time required to use an ada p-

tive grid becomes very attractive. It must also be remembered that

the percent extra time in this case is high because the equation being

solved is very simple. Since the time for grid generation remains

about the same in far more complicated problems, the present extra

time for grid generation will be much less for such problems.
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In conclusion, the major contributions of this paper are:

(a) Formulation of simple first order partial differential

equations for the grid point velocity in transient problems.

(b) Significant error reductions for solutions of Burger's

equation in one and two dimensions.

(c) The use of local flow information and boundary motion in

determining the interior grid point motion.

kj
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A Two Dimensional Mesh Verification Algorithm

R. Bruce Simpson

Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada.

Abstract

A finite element mesh is commonly represented in a program by

lists of data, i.e., vertex coordinates, element incidences, boundary data.

In general, these lists describe a collection of triangles. Whether the

triangles form proper mesh for a region or not, i.e. whether they 'tile'

a region, is data dependent in a non obvious way. This paper specifies

a set of ccnditions on the triangles (i.e. on the list data) which ensure

that the triangles tile a region and which also can be verified by an

algorithm which is referred to in the title and which is claimed to be

of reasonable efficiency.
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Basi_____cListR__epresentationof a Mesh

The mesh verification algorithm assumes that the collection

of triangles is described by three lists as shm_n in the following

small example.

432

Vertex
Index

1

2
3
4

5
6

[7
8

9
10

11
12

13
14

15
16

Coordinates

x-y coordinates
Element incidences

index vertex indices

2.00 1.00 1 1 2

2..00 2.00 2 2 4

1.00 1.00 3 2 5

i. O0 2. 004(_..._._________:4____5 6
2.oo 3.00 51-171[]
I. O0 3. O0 _ /"'--C_...-._-_ S

2.00 ._-_Y_-----7-_, _/'9 lo
1.00 _.uu h_ _w- .,8 i0 2

3.00 1.00 \ I ;_9 ii 12
3.O0 2.O0 /i0
3.oo 3.oo /k ! ii
3. O0 4.00 I \ 12
4.00 1.00 l I 13

4.oo 2.oo I I :t4
4.00 3.00 I I 15

4.00 4.00 lj I 16

4 J
' I

Boundary References
index references

3 1 1 3
3 2 2 2

4 3 3 1
4 4 4 2

6 5 6 1
6 6 6 2

1 7 7 3
1 8 8 1

5 9 9 3
12 7_ --l-O-_._I0 1

13"_4 9Rv._ iz ]_lq _I_
14 zo 9 ,-"_ 3.2 riT--fk"
14 15 i0 13 13 i _.

15 11 10 14 14 2 _,
15 16 11 15 15 1
16 12 11 16 16 1 I

/,
[1

// /
I

/ I

©

/' /

I i
I
I I

/ I

I I

I /

/

/
/

I

I I

i ¢

®1,." @ //

/' l/7 I/" I/ ,/

indicates
boundary
edge start_
at

_ =.
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ci)

COND IT 10NS

THE TRIA_iGLEVERTICES ARE SPECIFIED IllCO_;TER CLocKWISE ORDER

V (1,K) V (2, K)

(_2)

P.E

THE ITH FJDGEOF E (K)_sTHEONLY EDGE JOINING ITS

END POI_FFS(_UNDARY EL-FJ,IENT)

THERE IS Bv,ACTLY ONE ELF_J_NT,E (_) HAVING THE SAME

EDGE, IN THIS LAI-FERCASE, THE DIRECTIONS OF THIS

LINE SEGMEFITAS EDGES OF E (K) AND E (_) MUST BE

DIFFERENT,

C 3) NO BOUNDARY EDGE INTERSECTS MORE TRAN ONE ELEMENT, EXCEPT

AT ITS END POINTS,

C 4) A VERTEX CAN RAVE AT MOST ONE BOUndARY EDGE DIRECTED AWAY

FRO_ IT,
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IMPLICATIONS

1)MESH BOUNDARY EDGES FORM A SET OF DISJOINT.,ORIENTED.,SIMPLE CLOSED

CURVES

CI, C2, ,,,_ CK -- MESH BOUNDARY CURVES

2) EACH CURVE OF BOUNDED INTERIORDEFINES A CONNECTED REGION,

BOUNDARY OF THIS REGION IS COMPOSED OF HESH BOUNDARY CURVES

THE

J X

3)R

(Assure1 CURVE oF BOUNDED INTERIOR - CI)

DEFINE R = h (INTERIOROF CI)

i=i

E O)

(CONNECTIVITYK)

,m. -_I

V

4) IF P IS NOT AN EL_IENT EDGE

P LIES IN EXACTLY ONE ELEMENT,
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Small Example Invalid Mesh on Hollow Square

@ @ Q

t(, !

@
@ //O @ @ 14

Zl/5

Coordinates of vertex 13 changed to (2.5, 2.5)

k_j _ Section of Mesh Verification Algorithm Detailed Error Report

MESH VERIFICATION ERROR

INTERSECTING BOUNDARY EDGES -

EDGE FROM VERTEX 13 AT ( 2.50, 2.50)

EDGE FROM VERTEX 2 AT ( 2.00, 2.00)

TO VERTEX 9 AT ( 3.00, 1.00)

TO VERTEX i0 AT ( 3.00, 2.00)

MESH VERIFICATION ERROR

INTERSECTING BOUNDARY EDGES -

EDGE FROM VERTEX 14 AT ( 4.00, 2.00)

EDGE FROM VERTEX i0 AT ( 3.00, 2.00)

TO VERTEX 13 AT ( 2.50, 2.50)

TO VERTEX ii AT ( 3.00, 3.00)

FROM BDSCAN, NO. OF BOUNDARY CURVES= 2

MESH VERIFICATION ERROR

ELEMENT i] APPEARS TO HAVE VERTICES LISTED IN WRONG ORDER

X= 3.000000E 00 Y= 1.000000E 00

X = 2.500000E 00 Y= 2.500000E 00

X= 4.000000E 00 Y= 2.000000E 00

DET = -2.000000E 00

MESH CHECK ENCOUNTERED 3 ERRORS
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GENERATION OF C-TYPE CASCADE GRIDS

FOR VISCOUS FLOW COMPUTATION

Peter M. Sockol

NASA Lewis Research Center

Cleveland, Ohio

ii±=

ABSTRACT

This paper presents a rapid procedure for generating C-type cascade grids

suitable for viscous flow computations in turbo_chinery blade rows. The

resulting mesh is periodic from one blade passage to the next, nearly

orthogonal, and continuous across the wake downstream of a blade. The

procedure employs a pair of conformal mappings that take the exterior of the

cascade into the interior of an infinite strip with curved boundaries. The

final transformation to a rectangular computational domain is accomplishe_

numerically. The boundary values are obtained from a panel solution of an

integral equation and the interior values by a rapid ADI solution of Laplace's

equation. Examples of C-type grids are presented for both compressor and

turbine blades and the extension of the procedure to three dimensions is

briefly outlined.

Precedingpageblank
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Most of the coordinate systems in current use for turbomachinery flow

cormputations are of one of three types. The channel gria has one family of

lines starting upstream, passing through the blade rows, and continuing on

downstream. The O-type grid has one family of lines that form closed loops

around the blades. Finally, the C-type grid has one family of lines that wrap

around the blade leading edge and continue on downstream. While the channel

grid can be aligned with the flow and is fairly easy to generate, the

resolution around the leading edge is usually poor and a choice usually has to

be made between periodicity or near orthogonality for highly staggered

cascades. Although the O-type grid provides excellent resolution around

leading and trailing edges and may be both periodic and orthogonal, in general

there is no mesh line aligned with the downstream flow and, hence, it is

unsuitable for viscous computation. The C-type grid, on the other hand,

appears to be a good choice for viscous flows. It provides good leading edge

resolution, it can be both periodic and orthogonal, and it can be aligned with

the downstream flow. This paper presents a rapid procedure for generating

such C-type grids.

CIIANEL ORII)

O-GRID

C'GRI_

438

L __

V



The procedure starts with a conformal mapping which takes the exterior of a

cascade of semi-infinite flat plates in the Z-plane into the interior of the

unit circle in the W-plane. Upstream infinity maps to the origin and

downstream infinity to +i on the real axis. This mapping is a limiting form

of the standard mapping for a cascaae of finite-chord flat plates (i). When

this mapping is applied to a real geometry, such as the turbine cascade in the

figure, the semi-infinite fiat plate is taken to run _rom a point Z1

inside the leading edge through the downstream end of the wake.

CONTOURIN CASCADEPLANE

T
5

_L
\
\
\
\
\

e iY in) 2 cos y log(l - W_Z = Z 0 + _ (log W - -

I = _ e iY, Zo = ZZ + 2l[y sin y + cos y log(2 cos y)]
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The mapping of the turbine cascade and wakes of the preceding figure produces

the highly distorted "circle" in the adjacent figure. Note that the contour

actually crosses the real axis twice between zero and one. The next mapping

takes the interior of the unit circle in the W plane, with a branch cut from

zero to one along the real axis, to the interior of the infinite strip between

the real axis and (-i _ ) in the _ -plane. The upper and lower sides of

the wake at downstreaminfinity are mappedto plus and minus infinity,

respectively, while upstream infinity maps to the origin. Since W is a

function of _2 , reflection of _ through the origin leaves W unchanged.

CONTOURIN W PLANE

440
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The image of the cascade of turbine blades and wakes in the _ -plane is a

pair of parallel straight lines co1_nected by a roughly S-shaped curve. In

actual practice W is eliminated between the two functions and the transfor-

mation from Z to _ is obtained by Newton iteration proceeding from point to

point around the contour. To insure that the branch cuts of the logarithms

are never crossed, the imaginary parts of these logarithms are saved.

Whenever the change in either of these quantities between adjacent points

exceeds _+_ , the computed value of the logarithm at the new point is

incremented by ¥2 _ i, i.e. in the opposite direction.

CONTOURIN PLANE

v

"---------L_- 13

441



The final mapping transforms the infinite strip in the _ -plane, bounoed

by the blade-wake contour and its reflection through the origin, into a

rectangular domain with coordinates F -- _ + i q If we let F be the

complex potential for flow through the strip and require F( _ ) - -F(- _ )

together with _ = -i along the contour, then we can write F as a contour

integral. Here C, (3, and h are, respectively, the complex velocity, flow

angle, and normal channel width in the far fielo. The figure shows the

formation of an integral equation for the unknown vortex density qt" The

source density qn is set to cancel the normal component of the velocity

C. Here s is distance along contour. A simple panel method, with flat

panels and locally constant qt and qn' is used to solve for qt and

then to find _ as a function of _ along the contour.

FORMATIONOF INTEGRALEQUATION

COF]PLEXPOTENTIAL

/_[ t +--CF(_) = _-_ ¢(t) log __ _ dt + C_
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SET _(t)_ = qt - lqn

WITH qn (t) = im [c _-_]

ONCONTOUR n : -z AND

t t---_l q_ t- :Uds

= i + im[C_}
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Generation of the grid in the rectangular , n space proceeds in two

stages. First points are located on the boundaries such that the grid in the

cascade plane is periodic and continuous across the wake. Periodicity is

enforced by distributing points symmetrically about the origin along the

-axis. Continuity across the wake, away from the trailing edge, is

achieved by selecting a constant mesh size AT for this region such that the

spacing in the cascade plane is an integer fraction of the staggered distance

s sin l_wJ , where s is the blade pitch and Bw is the wake angle. The

values of _ along the boundary are then found by inverse interpolation in

the solution of _ vs _ . In order to enforce continuity near the

trailing edge, a local straining is first introduced that places a point

directly at the trailing edge. Then pairs of neighboring points across the

wake are adjusted until their images in the cascade plane coincide. The

distribution of points with _ at the two ends of the region is arbitrary.

Uniform spacing can be used for inviscid flows, and boundary layer stretching

can be used to cluster points near the blade surface _%d wake for viscous

flows. Once the boundary values of C are specified, interior values are

found by solving the complex Laplace equation by a cyclic ADI relaxation

scheme which has the symmetry properties of _ built in. Estimates of the

max_ and minimum eigenvalues of the matrix are used to obtain near optimum

values of the acceleration parameters (2). Convergence to the round-off error

limit with seven place arithmetic is typically obtained in six to twelve

iterations, even for cases where the maximum and minimum eigenvalues differ by

five orders of magnitude.
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GRIDGENERATION

1 BOUNDARYVALUESIN ( _ , n ) SPACE

VALUESSYMMETRICABOUTORIGIN

At CONSTANTALONGWAKEWITH

JAZ I = (S sin ]8wl ) /integer

LOCALSTRAININGNEARTRAILINGEDGE

'',ll,,,,l_ _ts,,_t,l:, ,,:te,,:,,t,i, 2

ARBITRARYDISTRIBUTIONALONG

O INTERIORVALUESIN ( _ , ,_) SPACE

32_ + _2_ _ 0

3_ 2 3n 2

SOLVEDBY CYCLICADI RELAXATION
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© This figure shows the grid distribution in the _ -plane. Note that the

upper boundary in the plot, which is found by the symmetric ADI solution of

Laplace's equation, maps into the upper and lower periodic lines in the

cascade plane.

GRIDIN _ PLANE

09JG_,I,j.,9A:_S 1S
_r_,_;C._5A.!'',__'

OF Io'-,',---
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The final grid in the cascade plane is obtained by conformal mapping of the

solution in the _ -plane using the two analytic functions previously

introduced. This figure shows the grid distribution for the cascade of

turbine blades. Note that the continuity across the wake was obtained at the

expense of a small amount of nonorthogonality. The rounded cap at the

upstream boundary was obtained by extrapolation from the next two inner loops.

Generation of this grid (99 x 7 points) required about 1.4 sec. of CPU time on

an IBM 3033 computer.

GRID IN CASCADE PLANE
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F

%,...i The last figure presents C grids for a compressor stator ar_ a turbine rotor.

The stator was designed to turn the flow to the axial direction, hence, there

is zero stagger in the downstream boundary. The turbine rotor is a

particularly difficult case as it was designed to produce 126 degrees of

turning. In this case the imposition of continuity across the wake resulted

in a significant change in slope.

The extension of this procedure to the generation of three-dimensional

turbomachinery grids should be relatively straightforward. First the spanwise

direction is discretized by a number of coaxial, axisy_etric surfaces. Next,

anO most difficult, the intersection of the blade with each of these surfaces

is obtained in n_ridional ( m ) and tangential ( Q ) coordinates. Since the

geometry is periodic in 0 , these ( m , e ) coordinates can be fed into the

current program to generate a C-grid on each of the axi-_tric surfaces.

For O-grids this has already been done by Dulikravich (3).

C0_PRESSORSTATOR

TURBINEROTOR

(
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NUMERICAL GENERATION OF TWO-DIMENSIONAL GRIDS BY

THE USE OF POISSON EQUATIONS WITH GRID CONTROL

AT BOUNDARIES
=

Reese L. Sorenson
NASA Ames Research Center, Moffett Field, CA 94035

and

Joseph L. Steger
Flow Simulations, Inc., Sunnyvale, CA 94086

Abstract

A new method for generating boundary-fitted, curvilinear, two-dimensional
grids by the use of the Poisson equations is presented. Grids of C-type
and O-type have been made about airfoils and other shapes, with circular,
rectangular, cascade-type, and other outer boundary shapes. Both viscous
and inviscid spacings have been used. In all cases two important types
of grid control can be exercised at both inner and outer boundaries.
First is arbitrary control of the distances between the boundaries and
the adjacent lines of the same coordinate family, i.e., "stand-off" dis-
tances. Second is arbitrary control of the angles with which lines of
the opposite coordinate family intersect the boundaries. Thus, both grid
cell size (or aspect ratio) and grid cell skewness are controlled at
boundaries. Reasonable cell size and shape are ensured even in cases
wherein extreme boundary shapes would tend to cause skewness or poorly
controlled grid spacing. An inherent feature of the Poisson equations
is that lines in the interior of the grid smoothly connect the boundary

points (the grid mapping functions are second-order differentiable).

A user-oriented, well documented, FORTRAN computer program, called GRAPE,
has been written to employ this grid generation method. It is available
from the Applied Computational Aerodynamics Branch at NASA-Ames Research
Center.

*Now with Stanford University.

J
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DESIRED PROPERTIES OF A GRID GENERATOR

• ARBITRARY BOUNDARY SHAPES

• ARBITRARY POINT DISTRIBUTION ON BOUNDARIES

• SMOOTH VARIATION (DIFFERENTIABILITY) IN INTERIOR

• COMPUTATIONALLY FAST

• EASY TO USE

• CONTROL OF ANGLES

AT BOUNDARIES
• CONTROL OF SPACING

NEAR BOUNDARIES

The principal contribution of this work
is that the angles and spacing at the
boundaries are _. Thus, one need
not try to implement pre-determined
angles and spacing by trial-and-error
tuning of other parameters.
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TOPOLOGY OF GRID MAPPINGS

Q = *?max

= _max

_=0

c d c

'r/= _max

COMPUTATIONAL SPACE

PHYSICAL SPACE
O-TYPE GRIDS

e_..__ x / _ = _Tmax

PHYSICAL SPACE

g
\
'_ -- _max

• /
\ _=0

_=0
d

C-TYPE GRIDS

d e f g
\

Q : T/ma x

_=o
___./

1/1111111t111111t/

a b c b a

COMPUTATIONAL SPACE

\

= _max

Topology and notation for O-type and
C-type grids are shown here. The
independent variables in the physical
space are x and y, while _ and q are the
independent variables in the cartesian
computational space,
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POISSON EQUATIONS

OR, WITH DEPENDENT AND INDEPENDENT VARIABLES INTERCHANGED:

_ = _j2 (Px_ + Qx_)o_x_ 2/3x_r/ + 7xr/_

_y_ - 2/3y_ + 7Yr/r/= _j2 (py_ + Qyr/)

WHERE: e = xr/2 + yrt2

= x_xrt + Y_Y_
V

= x2 + y2

J = x_y_ -x_y_

Basic to the method is that the grid transformations
= _(x,y), n = n(x,y) must satisfy the Poisson

equations. The equations are solved with dependent
and independent variables interchanged to facilitate

numerical integration and the application of boundary
conditions. The equations with variables thusly
interchanged are sometimes referred to as the "trans-
formed" Poisson equations.
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CHOICE OF iNHOMOGENEOUS TERMS

p(_, Q) = p(_)e -aQ + r(_) e-C(Qmax -Q)

O(_, r/) = q(_) e-b_ + s(_) e-d(_ma x-_)

Inhomogeneous, or right-hand-side, or P and Q terms in
the Poisson equations determine the character of the

grid. Different choices for P and Q produce different
grids. In this method P and Q are chosen as shown here
with a,b,c, and d positive Note that the inner (n = O)
boundary P(_,n) reduces to p(_), and that at the outer
(n = nmax) boundary P(_,n) becomes r(_), and similarly
for Q(_,n). The approach is to assume that the geo-
metric input requirements (control of angles and spac-
ing at boundaries) are satisfied along with the Poisson
equations at the boundaries, then back-solve for p(_),
q(_), r(_), and s(_). Then P(_,n) and Q(_,n) can be
calculated for every point in the field.
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ITERATIVE UPDATE OF INHOMOGENEOUS TERMS

454

GIVEN TWO GEOMETRIC REQUIREMENTS:

• CONTROL #(_)

• CONTROL _s(_)

NEW VALUES FOR p(_), q(j_)

NEW VALUES FOR P(_, _7), Q(_, T/)

TWO ADDITIONAL EQUATIONS:

_$ .V_= I_ I 1_',7 Icose

As = [(,_x)2 + (,_y)2] ½

1
DESIRED VALUES FOR x_, Y77

AT BOUNDARIES

xfifi, y_fi

NEW VALUES FOR x, y

AT BOUNDARIES FROM

NEW x,y

J
For each boundary (inner and outer) the two geometric control
requirements can be re-cast as the two additional equations
shown on the upper right. These two equations can be solved for

the two derivatives x and Yn" Derivatives x_ y_, x_ and y_n , ,

can be found by differencing known, fixed boundary data. Deriva-

tives xcn and Y_n are found by differencing the x and Yn justn
found, with respect to _. Thus, to back-solve the transformed
Poisson equations for p(_) and q(E), two derivatives remain to be
found : x and

nn Ynn"

In the solution procedure, each iteration step is in two parts.
First, the x and y from the previous iteration (or initial condi-
tions) are differenced to find x and at the boundaries. Thesenn Ynn

are combined with all the other derivatives discussed above, which
are fixed for all iteration levels, to form the transformed Poisson
equations at the boundary. These are back-solved for new values of
p(_) and q(_). Terms r(_) and s(_) are similarly found. New
values for P(_,n) and Q(_,n) can then be calculated. The second
part of each solution step is to perform one iteration of some
solution procedure, such as SLOR. The above is iterated to

convergence, producing a grid that satisfies the given geometric
requirements. Inhomogeneous terms which yield the desired grid
control are thus found automatically as the solution proceeds.



_.; COARSE-FINE SEQUENCING SOLUTION PROCEDURE

-z. _:i

DEFINE INTtTIAL [CONDITIONS

1
"--CO--'ARSE GRID SOLUTION PROCESS

hA

L-

l

I ONE SLOR ITERATION 1
STEP FOR x, y

YES

I
I
i
!

I
I
I

___J

• RESULTS IN SPEEDUP (OVER NORMAL SLOR}

BY FACTOR OF 15,

,L

I FROM COARSE SOLUTION,

INTERPOLATE TO FIND

INITIAL CONDITIONS FOR

FINE SOLUTION

l

FINE GRID SOLUTION
PROCESS (IDENTICAL TO

COARSE SOLUTION

PROCESS)

I
1

t.. ....

• ,, . -++,r+7-+
-+---+t_+ ,"_]") I_ " +_.; + ! ,:. '.. <7

C_,_7 ]+' _.;,.} ,'_- .++-

Numerical convergence is greatly accelerated by an
additional feature: coarse-fine sequencing. The
solution is first iterated to convergence on a coarse
grid consisting of every third point in the _ direc-
tion and every third point in the r_ direction. This
convergence requires relatively little computer time
since the amount of arithmetic being done per step
is one-ninth that which would otherwise be done.
The coarse solution is then interpolated to provide
initial conditions for a fine solution using all of
the points. Coarse-fine sequencing produces a speed-
up over normal SLOR by a factor of up to 15. Grids
have been generated, for simple cases, in as little
as two-thirds of a second of CPU time per thousand

grid points on a CDC 7600 computer, including "set-up"
overhead.
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GRIDS ABOUT HIGHLY CAMBERED ELLIPSE

GENERATED BY
LAPLACE

EQUATION,
SHOWING POOR

CONTROL OF CELL
SIZE AND

SK EWN ESS

I

f ,

GENERATED BY
POISSON

EQUATION
WITH CONTROL
AT BOUNDARIES

The effectiveness of the grid control is demonstrated in
this comparison of two grids about a highly cambered 12:1
elliptical airfoil, In the two top figures is seen a grid
generated by the Laplace equations--like the Poisson equa-
tions but with P -- Q = O. Uncontrolled cell size and skew-
ness are clearly seen. The figures on the bottom were
generated by the present method with the grid control at
the boundaries. It was required that the lines intersect
the airfoil at 90 ° and that the standoff distance be 0.005
chord lengths at all points on the airfoil surface, The
angle requirement was satisfied to a tolerance of + 0.I °
and the distance to a tolerance of + 0.00001 chord-lengths.
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NEARLY SQUARE GRID CELLS ALONG SURFACE IN LEADING
EDGE REGION OF NACA 0012 AIRFOIL

GRID SPACING NORMAI_ TO SURFACE (Z_s)SPECIFIED AS
EQUAL TO LOCAL VALUE OF ARC-LENGTH

ALONG SURFACE

An interesting capability of this method is seen in this
close-up view of the leading edge region of a grid about
an NACA 0012 airfoil. The angle requirement need not be
90 ° and it need not be equal at all points on the airfoil
surface. Likewise, the standoff spacing need not be con-
stant. In this grid the angle requirement was chosen as
90 ° everywhere on the airfoil, but the standoff spacing
requirement (normal to the airfoil surface) was taken to
be equal to the local value of the arc-length along the
surface. This produces grid cells along the surface that
are nearly square, despite greatly varying surface dis-
tribution.
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C-TYPE GRID FOR MODELING WIND TUNNEL WALLS

GRID SPACING AND ANGLES CONTROLLED AT
OUTER BOUNDARY

A C-type grid for modeling flow through
a wind tunnel is seen here. Grid spac-
ing and angles are controlled at the
outer boundary.
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UPSTREAM REGION IN O-TYPE CASCADE GRID

E CONTROL OF SPACING AND
ANGLES AT OUTER BOUNDARY
ENSURES SMOOTH TRANSITION
BETWEEN CASCADE ELEMENTS

Control of spacing and angles at outer
boundary is applied here to a cascade.
It was specified that the lines of con-
stant n which intersect the top and
bottom parts of the outer boundary of
each cascade element do so vertically.
Thus, the application of periodic bound-
ary conditions between cascade elements
is facilitated.

This same capability ensures smooth ver-
tical transition across the branch-cut

in the wake region of a C-type grid.
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GRID USED IN STUDY OF BLAST WAVE ENCOUNTERING
STATIONARY PICKUP TRUCK

The versatility of the method is illustrated here.
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FEATURES OF GRAPE (G_.R.RIDSABOUT AIRFOILS USING

POISSON'S EQUATION), A USER-ORIENTED
FORTRAN COMPUTER PROGRAM

• 0, AS ARE INPUT

CODING IS MODULAR, GENEROUSLY COMMENTED, SYNTACTICALLY

CONSERVATIVE

• BUILT-IN DEFAULT CASE, AND SIMPLE, WELL THOUGHT-OUT INPUT WHICH

IS CHECKED BEFORE USE

• VERSATILE:

CASCADE, VISCOUS OR INVISCID

• GRAPHICAL OUTPUT

• FAST

• WELL DOCUMENTED AND ACTIVELY SUPPORTED

C-TYPE OR O-TYPE, FREE-STREAM OR WIND TUNNEL OR

A user-oriented, well documented, FORTRAN computer

program, called GRAPE, has been written to employ
this grid generation method. It is available from
the Applied Computational Aerodynamics Branch at
NASA-Ames Research Center.
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USE OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

TO GENERATE BODY FITTED COORDINATES

Joseph L. Steger

Flow Simulations, Inc., Sunnyvale, CA 94086

and

Reese L. Sorenson

NASA Ames Research Center, Moffett Field, CA 94035

Abstract

i

Interpreting previous work, hyperbolic grid

generation procedures are formulated in the style

of the elliptic partial differential equation

schemes used to form body fitted meshes. For

problems in which the outer boundary is not

constrained, the hyperbolic scheme can be used

to efficiently generate smoothly varying grids

with good step size control near the body.

Although only two dimensional applications are

presented, the basic concepts are shown to

extend to three dimensions.

Now with Stanford University.
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The task of generating the exterior mesh about

an arbitrary closed body as indicated in this slide

is undertaken. The location of the outer boundary

is not specified; it only need be far removed from

the inner boundary. Such a grid generation problem

is encountered in external flow aerodynamics.

We seek a grid composed of constant _ and n

lines as indicated in this slide, 9iven initial x,y

data along $ at q = O. The grid generation

equations, just as the flow field equations, are

solved in the uniform transform plane.

SKETCH OF PHYSICAL AND COMPUTATIONAL PLANE
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Partial differential equations are sought to

generate a smoothly varying mesh such that grid lines

of the same family do not interect or coalesce. Two

systems of nonlinear hyperbolic partial differential

equations have been considered for the given initial

data sketched in the previous slide. As indicated

in this slide, these systems each use the condition of

orthogonality and a geometric constraint.

HYPERBOLIC GRID GENERATION EQUATIONS

ARC LENGTH-ORTHOGONALITY SCHEME

x:_ + y_ + x2 + y2 = (As) 2

x_x_ + Y_Yrt = 0

VOLUME-ORTHOGONALITY SCHEME

x_y_- x_y_ = V

X_Xr/+ Y_Y_I = 0

IN BOTH CASES A_ = AT = 1
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The previously described nonlinear partial

differential equations must be shown to be properly

posed for the given initial value data. As a first

step, the equations are cast in a locally linearized

form so that they can be analysed as a system of two

first order partial differential equations. For the

locally linearized form to be meaningful, the equations

are expanded about a nearby known solution or state.

LOCALLY LINEARIZED FORM

466

EXPAND x AND y ABOUT KNOW STATE _,

E.G. x_y_ = (_ + x-_)_: (_ + Y-Y)'r/

= _yfi + (x_ - x_)y_ + (yfi - y,r/)_ + 0(Z_2)

~ ~= + _'_Y77- x_Y'r/+ O(A2)

OBTAIN LOCALLY LINEARIZED FORM



Analysis of the locally linearized partial

differential equations indicates that the equations

2+y_#Ocan be marched in n provided that x_

That is, the grid spacing in $ cannot be of zero

length. The fact that B-*A is a symmetric matrix

ensures that it has real, distinct eigenvalues.

This then means that the system is hyperbolic

if q is used as the marching or time-like

di re ct ion.

HYPERBOLICITY

LOCALLY LINEARIZED VOLUME-ORTHOGONALITY EQUATION

FIND:

a) B-1 EXISTS IF x_+ y_ =/=0

b) B-1A IS SYMMETRIC

THEREFORE LINEARIZED EQUATIONS ARE HYPERBOLIC
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The grid generation equations can be solved

using standard numerical techniques for first order

systems of hyperbolic partial differential equations.

In our case we have used a noniterative implicit

finite difference procedure. An unconditionally

stable implicit scheme was selected so that an

arbitrary mesh step size can be specified in the

marching direction. The same kind of numerical

procedure is used to solve the flow field equations.

NUMERICAL SOLUTION OF VOLUME-ORTHOGONALITY
EQUATIONS

USES IMPLICIT FINITE DIFFERENCE SCHEME FOR

x_Y,rt - x_y_ = V

X_Xrt + Y_Y'r/= 0

SCHEME IS : a) UNCONDITIONALLY STABLE

b) NONITERATIVE

c) SECOND ORDER IN _, FIRST ORDER IN

d) REQUIRES A BLOCK TRIDIAGONAL INVERSION
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F
The volume orthogonality scheme requires that the

user specify the volume (area in 2-D) of each mesh

cell. The quality of the grid will, to a large extent,

be determined by the user's cleverness in specifying

these volumes. To specify these volumes, we currently

define a simple geometric shape (e.g. circle or straight

line) which has exactly the same arc length as the body

we wish to grid. An algebraically clustered grid is

then created by the user for the simple geometric shape.

The volumes of this simple grid, the control volume grid,

are then used directly on a point by point basis in the

hyperbolic grid generation equations.

v SELECTION OF VOLUMES

\
PHYSICAL

b GRID

SPECIFIED

CONTROL

VOLUME

GRID

sb - sa

b
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In this case a viscous grid is generated about

the cambered profile. The normal grid spacing at

the body is 0.01% of the chord length. Note that

because volume is specified the grid spacing grows

in the marching direction so as to prevent the

circumferential spacing from vanishing. For a

profile with twice the camber, however, this

process breaks down and grid lines do coelesce.

In these cases a more sophiticated means of

specifying the volumes is needed.
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VISCOUS GRID GENERATED ABOUT HIGHLY

CAMBERED AIRFOIL

GRID DETAIL NEAR BODY

1,5

Y

%..;

GRID DETAIL NEAR LEADING EDGE

%../

Y

.5

-.25
.50 .25
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These views show the hyperbolic grid generation

scheme applied to generating a "C-grid" about a cambered

airfoil. Here the control volume grid is generated

about a straight line, that is, it is nothing more

than a clustered rectangular grid. It is clear from

the view at the trailing edge that some adjustments

are needed to the current numerical treatment of

discontinuous boundary data.

GENERATION OF C-GRID ABOUT
CAMBERED AIRFOIL

OVERVIEW
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GRID DETAIL NEAR BODY

h--

GRID DETAIL AT TRAILING EDGE

0"_ _'_-:_-" "" ........

/

\
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HYPERBOLIC GRID GENERATION ADVANTAGES

• SMOOTHLY VARYING GRID IS FOUND

• GOOD USER CONTROL OF CLUSTERING NEAR BOUNDARY

• FAST GRID GENERATION

• ORTHOGONAL OR NEARLY ORTHOGONAL

• AUTOMATICALLY TREATS COMPLEX SHAPES

HYPERBOLIC GRID GENERATION DISADVANTAGES

• OUTER BOUNDARY CANNOT BE SPECIFIED (UNLESS

ITERATIVE SHOOTING METHOD DEVISED)

• SCHEME TENDS TO PROPAGATE DISCONTINUOUS
BOUNDARY DATA

• POORLY SPECI FlED BOUNDARY DATA AND CONTROL

VOLUMES CAN RESULT IN "SHOCK-WAVE" LIKE BREAKDOWN

v
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The hyperbolic grid generation scheme can also be

formulated in three dimensions. With volume specified

as one constraint, orthogonality can only be enforced

in two of the coordinate directions. The three partial

differential equations shown form a hyperbolic system

for marching in _. Proof that the equations are

hyperbolic was quite tedious, required considerable

insight, and was carried out by Dennis Jespersen of

Oregon State University.

?

x._j

EXTENSION TO THREE DIMENSIONS -

VOLUME AND TWO ORTHOGONALITY

d_ d__ 0
d_ d_"

a(x,y,z)
=V

SYSTEM IS FOUND TO BE

HYPERBOLIC
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The three constraints of orthogonality do not

form a hyperbolic system of partial differential

equations. Neither are the equations of elliptic

type. In fact, their classification and what if

any type of boundary data makes them unique is

unknown to the authors.

EXTENSION TO THREE DIMENSIONS -

THREE ORTHOGONALITY

d_ d_
e .m_.. _ 0

d_ d_
d_ d_

• _ _ 0

d_ d_

SYSTEM CANNOT BE MARCHED
AND IS NOT ELLIPTIC
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CURVILINEAR GRIDS FOR SINUOUS RIVER CHANNELS

Frank B. Tatom, Engineering Analysis, Inc.
William R. Waldrop, Tennessee Valley Authority

S. Ray Smith, Engineering Analysis, Inc.

CENTERLINE INTRODUCTION

In order to effectively analyze the flow in sinuous river channels

a curvilinear grid system must be developed for use in the appropriate hydro-
dynamic code. The CENTERLINE program has been designed to generate a two-
dimensional grid for this purpose.

The Cartesian coordinates of a series of points along the boundaries

of the sinuous channel represent the primary input to CENTERLINE. The program

calculates the location of the river centerline, the distance downstream along

the centerline, and both radius of curvature and channel width, as a function of

such distance downstream. These parameters form the basis for the generation

of the curvilinear grid.

Based on input values for longitudinal and lateral grid spacing,

the corresponding grid system is generated and a file is created containing

the appropriate parameters for use in the associated explicit finite difference

hydrodynamic programs. Because of the option for a nonuniform grid, grid spac-

ing can be concentrated in areas containing the largest flow gradients.

For the case of sinuous channels of constant or nearly constant
width the resulting curvilinear grid is orthogonal. The grid generation
procedure also provides for dividing the overall flow area under consideration
into a series of regions connected along common boundaries. This concept of

multiple regions tends to improve computational efficiency.

For many sinuous channels the assumption of constant width is not
appropriate. In such situations CENTERLINE generates a nonorthogonal grid
which takes into account the nonuniform channel width,

The CENTERLINE program is currently operational and has been used

successfully in conjunction with both two- and three-dimensional incompressible

hydrodynamic programs. To the authors' knowledge, it is the only ouz_ilineom

grid program currently coupled with operational incompressible hydrodynamic

programs for computing two- and three-dimensional river flows.
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BASIC CURVILINEAR COORDINATE SYSTEM

\\%\\\\\\\\ _

\ RIVER CENTERLINE

..',.__z.-'",- ;._ P _t."....... .,
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GOVERNING EQUATIONS FOR INCOMPRESSIBLE CURVILINEAR FLOW

30NT I NU I TY :

1 [_x (h h u) + _ (h h v)+ Tz (h h w)]
hxhyh z y z z x x y

= 0

X-MOMENTUM:

J

3u u 3u + v _u + w _u, 3x h _y h _zc -_T + hx y z

_h _h
v Y u x u

- v (_-3x h h _y ) + w (_ h
y x x y x z

_hx w z)
3z h h _x

z x

1

h h h
x y z

[_x (hyhz°xx) + _Y (hzhx°y x) + _z (hxhy°zx)]

a bh
+ xy x

h h _y
x y

Ozx 3h x Oyy _hy Ozz _h z
+ h h _---z- h----h_---_- h h 3x + F×

x z x y x z

y-MOMENTUM :

[_v u _v + _ 3v + w 3v
P -_T + h x _x hy _y hz _z

_hy _h xw 3hz v _hy) + u (_v u
- w (hzhy _y hyh z _z yh x 3x hxh y 3Y

1 [_x (hyhzOxy) + _-_ (hzhx°yy) + -_z (hxhy°zy) ]
hxhyh z

o _h o _h
+ -//---Y- + x_/L--X

hyh z _z hyh x 9x

Ozz _h z °xx _h x
+ Fy

hyh z _Y hyh x _Y

481



Z-MOMENTUM-

a[__._ u aw _v_v a w _ aw
0 + hx ax + hy 3y + h z a--"z

h_x_zz ahx w 3hz w ahz ah 1
- U ( _--_--- h--_x _---_-) + v ( _zhy ay hy_ z az _)

1 [_x (hyhzOxz)+ __y (hzhxOyz)_z (hxhy°zz)lhxhyh z +

°zx ah z °y z ah z Oxx ah a ah

x Xy__ __Z + v
+ hxhz ax + hzhy ay hzh x az hzhy az z

ENERGY.

aT + u aT + v aT + w aT

at h x ax hy ay h z az

1 [.__x C_xxh.yhz aT a hzh x
hxhyhz ( hx ____) + _ ( Y aT

Y

azh h

V
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COMPUTATION OF METRIC COEFFICIENTS

FUNDAMENTALCONSIDERATIONS:

• APPEAR IN GOVERNING EQUATIONS

e ONLY hx REQUIRES COMPUTATION

e EVALUATED FOR EACH GRID POINT

• DERIVATIVES ALSO REQUIRED

BASIC RELATIONS:

R +y
C

h x : Rc

hy = 1

hz : 1

DERIVATIVES:

_hx

?h x

?Y

: _ ..Y_._dRc

Rc2 dx

1

F,.
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GENERATION OF CURVILINEAR GRIDS

NON-UNIFORM
GRID TRANSFORMATION

CONSTANTWIDTH
CURVILINEAR GRID

DIGITIZATION OF CHANNEL1BANK COORDINATES

LOCATION OF ]CHANNEL CENTERLINE

RADIUS OF 1CURVATUREOF CENTERLINE

ORTHOGONAL ICURVILINEAR COORDINATES

VARIABLE
i WIDTH TRANSFORMATION ]

i NON-ORTHOGONALCURVlLINEAR COORDINATES I

NON-UNIFORM
GRID TRANSFORMATION

VARIABLE WIDTH
CURVILINEAR GRID
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TYPICAL RESERVOIR

IRREGULARCONTOURS
OF_ANKS _

CENTERLINE
OF RIVER

Co
U1
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i
i

COMPUTATION OF RADIUS OF CURVATURE AND CHANNEL WIDTH

DIGITIZE CARTESIAN COORDINATES OF CHANNEL BANKS

• LOCATE GEOMETRIC CENTERLINE

COMPUTEDISTANCE ALONG CENTERLINE, x

• COMPUTERADIUS OF CURVATURE, Rc(X)

• COMPUTECHANNEL WIDTH, b(x)
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VARIABLE WIDTH TRANSFORMATION

BASIC TRANSFORMATION-

b = Y2(x) - Yl(X)

X = X

Y = y/b

TRANSFORMATION DERIVATIVES:

af _ af af
ax ax +_-Y'

af _ af 1
ay aY

a2f
_)x2 a2f a2f a2f 2 _f Y"

_X---_Z+ 2 aX_-----v-y'+ _ (y,) + 7

a2f a2f I

: ay--_ b_

where

Y db
Y' : -E_"

y,, = 2Y db Y d2b
b-'_-B_" E d-_
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NON-UNIFORM GRID SYSTEM

_ .:E i

=

!

!

-Y PANE

x

PRIMARY REGION OF INTEREST

t ', . ._i_.-----.

|

' L
I

X-Z PLANE
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RELATIONSHIP BETWEEN NON-UNIFORM AND UNIFORM GRIDS

0

/
/

,j:"

i

X (NON-UNIFORM)
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TRANSFORMATION FROM NON-UNIFORM TO UNIFORM GRID

PROCEDURE:

• IDENTIFY "REGIONS OF INTEREST"

• INPUT DESIRED GRID SPACING

• GENERATE TRANSFORMATION DERIVATIVES

BASIC TRANSFORMATION:

x = x(X) 1 ANALYTICAL TRANSFORMATION
Y = W(Y) FUNCTIONS NOT REQUIRED

z : z(Z)

TRANSFORMATION DERIVATIVES:

BX : Bx _-X

_ 2x +_ _= 2
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CURVILINEAR GRID FOR CUMBERLAND RIVER SEGMENT

• NEAR TVA GALATIN STEAM PLANT

• CONSTANT WIDTH CHANr_EL

• NON-UNIFOrM GRID (x, y, & z)

• 4 CONNECTED REGIONS

• USED IN 3-D FLOW COMPUTATIONS

SCALE IN METERS
,=---I '
0 200460660 _8OO

,I

%

All

0 0 0 o_
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CURVILINEAR GRID FOR TENNESSEE RIVER, WILSON RESERVOIR

e BETWEENWHEELERAND WILSON DAMS

• VARIABLE WIDTH CHANNEL

:=

m NON-UNIFORMGRID (x only)

e USED IN 2-D DEPTH-AVERAGEDFLOWCOMPUTATION

SCALEIN METERS
F_
0 1200 2400 3600
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CURVILINEAR GRID FOR GREEN RIVER SEGMENT

• NEAR PARADISE STEAM PLANT

e MODERATE SINUOSITY

e VARIABLE WIDTH

• UNIFORM GRID

3

3

2

SCALE IN METERS

0 30O 600

2M
23

21 2D

I]_3 8 7 6
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CURVILINEAR GRID FOR TENNESSEE RIVER, WHEELER RESERVOIR

• NEAR REDSTONEARSENAL

e MODERATESINUOSITY

• VARIABLE WIDTH

m UNIFORMGRiD

2l

2:

11

I|

|

|
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CURVILINEAR GRID FOR LITTLE TENNESSEE RIVER SEGMENT

• PART OF TELLICO LAKE

0 HIGH SINUOSITY

• VARIABLE WIDTH

m UNIFORMGRID

SCALE IN METERS
i

0 300 600 900
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CURVILINEAR GRID FOR TOMBIGBEE RIVER SEGMENT

• PORTION OF TENNESSEE - TOMBIGBEE WATERWAY

e EXTREME SINUOSITY

• VARIABLE WIDTH

• UNIFORM GRID

SCALE IN METERS

O 300 600 900
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INTEGRATION OF CENTERLINE PROGRAM WITH 3-D PLUME PROGRAM

I FLOW
BOUNDARY
CONDITIONS

3-D PLUME PROGRAM
CHANNEL
BOTTOM
CONTOURS

THERMO/HYDRODYNAMICsoLUTIONJ
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1 7
NON-UNIFORM BOTTOM CONSIDERATIONS OF CUMBERLAND RIVER SEGMENT

• BOTTOMPROFILES BASED ON SOUNDINGS

• LONGITUDINAL AND TRANSVERSEVARIATIONS ACCEPTED

m GRID SPACING LIMITS RESOLUTIONOF BOTTOMSHAPE

• BOTTOMPROFILES NOT USED FOR TRANSFORMATION

/
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VELOCITY VECTOR PLOT FOR CUMBERLAND RIVER SEGMENT

NOTE= VELOCITIES LESS THAN I.S cm/Je¢

ARE SHOWN AS A DOT

%. ,*,,,

_, %.

SUBMERGEO

INTAKE

DISCHARGE

CHANNEL

O 150 _,00 rn

::i:i.
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INTEGRATIONOFCENTERLINEPROGRAMWITH2-D PLUMEANDTRACKPROGRAMS

FLOW
BOUNDARY
CONDITIONS

I'PARTICLE ____
INITIAL

POSITION

I CHANNEL BANK COORDINATES i

ml 1 i

i c_"_"_!_°°_, 1
1

2-D CURVILINEAR GRID

2-D PLUME PROGRAM

HYDRODYNAMICSOLUTION

_
TRACK PROGRAM i

i ii

PARTICLE TRAJECTORY

CHANNEL
BOTTOM
CONTOURS

-_,_j
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o_ VELOCITY VECTOR PLOT FOR THE TENNESSEE RIVER, WILSON RESERVOIR

PARTICLE TRAJECTORY PLOT FROM TRACK IN TENNESSEE RIVER, WILSON RESERVOIR

INITIAL POSITION

./'/. .:"...

._:;
.i_/. ".-: ." . -:....,..

,,..=,y..:..--/,._-.. . ../.i.,'.----.----..- , - ....... ,_.
•.,-'--./. -. :-'_I- ---.....'-......
"I_- "_ " --:-'"-" :-" " --'--':41
"""/--_--"- _ " "' ' "" "i"

----...- ...,.:: . . . . . • c._, • '
• 3

6

I _ _ _

FINIALPOSITION

(,: ( (



CENTERLINE SUMMARY

e APPLICABLE TO SINUOUS RIVER CHANNELS

• CURRENTLY OPERATIONAL

• DIGITIZATION OF CHANNEL COORDINATES

• CONSTANT/VARIABLE CHANNEL WIDTH OPTIONS

UNIFORM/NON-UNIFORM GRID OPTIONS

PRESENTLY COUPLED WITH 2-D AND 3-D HYDRODYNAMIC

MODELS
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GRID GENERATION FOR

TWO-DIMENSIONAL FINITE

ELEMENT FLOWFIELD

COMPUTATION

MCDONNELL DOUGLAS CORPORATION

KENNETH E. TATUM
MCDONNELL AIRCRAFT COMPANY

ST. LOUIS, MISSOURI

To facilitate development of the finite

element method for fluid dynamics

problems a 2.D mesh generation scheme
has been developed with the emphasis on

versatility and independence of the finite
element solution algorithm to be employed.
No effort has been expended to maintain

grid line orthogonality since the finite
element method has no such requirement.
The method consists of sequences of

shearings and conformal maps with upper

and lower surfaces handled independently
to allow sharp leading edges. The method
will generate meshes of triangular or
quadrilateral elements. Thus, with certain
additional constraints of smoothness and

near.orthogonality, a quadrilateral mesh
could be generated for a finite volume type
method. Finally, solutions obtained by the
MCAIR finite element full potential flow

program on sample meshes are shown to
illustrate their usefulness.

Precedingpageblank
5O5



TYPICAL ANALYTIC TRANSFORMATION
PARABOLIC PLUS SHEARING

v

The parabolic tranformatlon shown Is a

typical method used to generate body fitted
coordinate meshes for 2-D flowfield computa.
tions, Precise transformation Jacoblans must

be defined relating the uniform cartesian
computational grid to the physical body.
conforming coordinate grid. Computations
are performed by Finite Difference Methods
(FDM) in the cartesian coordinate space with
determinants of the Jacoblans appearing as
added coefficients in the difference equa.

tions. Simple analytic transformations, even

if multiple, cause little increase in complexity

of the equations. However for complex body
shapes numeric transformation techniques
must be employed requiring Jacoblan
matrices to be computed for each grid cell.
These matrices, often approximated, must be
stored within the computer or recomputed for
successive iterations of nonlinear systems.
Either technique is costly.

_= i_ =_[x- Xo(Z)+ iy- iYo(Z)]/t(z)_>½

_=z

Y

_ ASINGULAR LINE (Xo, Yo' z)

(x, y, z) C

BRANCH CUT"_

bx

T/

" ""//////////" _- SI N GU LA R L i NE " "" /////////

(_,_,_1

AND THE SHEARING TRANSFORMATION

X = _ Y = _ - S(_, _') Z=_"

506

Figure I

V



.

Ii __:_

i

POSSIBLE FINITE ELEMENT MESH
TRIANGULATION ON UNIT SQUARE

: McDonnell Aircraft Company (MCAIR) is

studying the Finite Element Method (FEM) as
a method which might eliminate, or

drastically reduce, the cost associated with
transformation Jacoblans. The FEM is equally
suited to uniform cartesian meshes or

irregular, highly non.orthogonal meshes. Two
distinctly different FEM meshes (triangula.
tions) of the unit square are shown in Figure

2. Each mesh contains 36 nodes and are

equally usable even though a specific
problem may indicate the desirability of one
over the other. Computations may thus be

performed directly in physical space on
body.fitted grids generated independently
of orthogonality constraints. Only the
physical nodal coordinatesand the relation.
ships of nodes to elements must be stored.

Y

\\\\
\\\\\
\\\\\_1

0 1

36 NODES

50 ELEMENTS

Y

0
0

/

36 NODES

48 ELEMENTS

_X

Figure 2
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COMPLEX SINE CONFORMAL MAPPING

Grid generation for a FEM computation

may be performed by many means. While

conformal mappings of simple, highly regular

grids are not necessary from the standpoint

of maintaining orthogonality, they are useful

in producing grids with simple relationships

between nodes and elements. Accordingly

the current MCAIR technique is based on a

conformal (sine) mapping of a rectangular

region to a semi-oval region. A sequenc_

of shearing and stretching transformations

both prior to and subsequent to th(

conformal mapping, shape fine E'F'A' t(

that of one surface of the airfoil, either uppe,

or lower. The number of, or localization of, th(

shearings is entirely unimportant as long a_.

they may be programmed easily.

y

:l r:
-7r/2 F 7/2

BCD
y=k

_X

W = sin (Z)

Z=x+iy
W--u+iv

v B'C'D"

r 2 v 2

_.- u

D' E" F' A" B'

=1

V

Figure 3
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MATCHING OF UPPER AND
LOWER MESH REGIONS

The general method described by Figure 3
is used twice to form two mesh regions as

shown in Figure 4, one about the upper
surface and one about the lower surface. The
airfoil is situated with the forward.most and

aft.most points at y = O, x = ± 1 and the two

regions are designed to match along the line

y = O, I x I >1 1. Points along the line AC are
doubly specified thus creating a cut across
which wake/circulation boundary conditions

may be applied. Points along the matching
line BD are merged and no boundary is
considered there in the final mesh.

J

Oq -_:-::>

. i

Figure 4
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TRIANGULATION OF FIELD BY DIVIDING
QUADRILATERALS ALONG APPROPRIATE DIAGONAL

The actual computation of nodal

coordinates has been automated in a Fortran

computer code for an arbitrary airfoil either

specified analytically or by discrete points.

Program inputs allow the exact specification

of the desired mesh spacing along the body

surface as well as the relative spacings

normal to the surface. The final field is

triangulated as shown in Figure S by dividing

quadrilaterals along a diagonal, with the

diagonal direction varying between regions of

the mesh in such a way as to prevent the

conformal map from collapsing a triangle to

zero area. Triangular elements are desired

only because of the simpficity of finite

element integration over such regions.

However, if desired, quadrilateral elements

are obviously generated quite as readily by
the scheme.

\

\

\

AIRFOIL

TRAILING

J

/
/

DASHED LINES = DIAGONAL

, /
/

/
/

/

\

\
\

V

Figure 5
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Z 16.3% NLR 7301 AIRFOIL
72 x 17 MESH

i •

i 22

Figure 6 shows a final resultant mesh
generated about a modern supercritical
airfoil, the 16.3% thick NLR 7301 airfoil,
with the coordinate system scaled by the
airfoil chord. The mesh consists of 72
elements bounding the airfoil surface with

17 rows of elements extending outward from
the surface. A total of 1314 nodes define
the 2448 elements. Neither the bluntness
of the leading edge region nor the reverse
curvature of the aft lower surface create

any difficulties for the method.

l

0.60 7 \ 1

0.4O -

0.20 -

Y/C o -

-0.20 -

-0.40 -

-0.60 -
--0.60 -0.40 -0.20 C) 0.20 0.40 0.60 0,80 1.00 1.20 1.40

" _ !: X/C

Figure 6

_...J
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6% SYMMETRIC BICONVEX AIRFOIL
72 x 17 MESH

Figure 7 shows a sample mesh about an
airfoil with opposite extremes to that of

Figure 6. The airfoil is a thin (6%) symmetric
Biconvex section with sharp leading and
trailing edges. The sharpness of the leading
edge presents no difficulties for the method

due to the independent handling of upper and

lower surfaces. No singular point (Xo, Yo), as
needed for example by the parabolic transfor.

mation illustrated in Figure 1, exists for this
type of leading edge. Thus, any solution
procedure depending on a singularity point
unwrapping transformation will fail on this
airfoil

0.60
0.40

-0.20_ i-0.40_

-o.6o4--'_--_F-_-_4Z'_LJLY_LI-L_

-0.60 -0.40 -0.20 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40
X/C

Figure 7
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6% SYMMETRIC BICONVEX AIRFOIL
LEADING EDGE

Figure 8 is an enlargement of the leading

i......_ edge region of the mesh in Figure 7. Some

_;_:_ local stretchings of the mesh have been

automatically performed by the computer

t.-_ code to prevent some elements from becom-

r! _ ing too small or thin. The stretchings may
f _ distort the smooth variation of elements

: _ around the leading edge but In reality

i == Increase the potential for obtaining an
,. _.

accurate finite element solution on the mesh

due to the maintaining of smaller aspect

ratios (maximum/minimum dimension of

triangle) of Individual elements. Another

constraint on the elements necessitating

some local stretching is that the magnitude

of the area of the smallest element not be too

small relative to significant digit resolution of

the computer on which calculations are to be

performed.

0.12

_ 0.08

0.04

Y/C 0

-0.04

-0.08

-0.12

Y

L20 -0o16 -0,12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.20

X/C

Figure 8

51 3



SUPERSONIC FIGHTER AIRFOIL (20 ° AND 10 ° FLAPS)
72 x 17 MESH

The use of shearing transformations not

restricted to maintaining orthogonality of the

grid allows the creation of grids about sharp

corners. Figure 9 shows a grid about a

supersonic fighter airfoil section with both

leading and trailing edge flaps deflected. The

discontinuous surface slopes at the hinge

lines might create numerical singularities in

methods which attempt to maintain

orthogonal grids. The MCAIR technique
however has no such difficulties. The com.

puter program also allows element spacings

to be user specified to facilitate bunching of

elements around the flap hinges where high

velocity gradients are to be expected in the
FEM solution.

o6o fi
YIC 200

--0.20

--0.40

-0"6-__ O/JJ-_0.20 0.40 0.60 0.80 1.00 1.20 1.40

X/C

Figure 9
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NLR SYMMETRIC SHOCK-FREE AIRFOIL
36 x 17 MESH

Figure 10 is an example of a half.plane

mesh about a symmetric NLR shock.free

airfoil design. The Independent handling of

upper and lower airfoil surfaces allows this

type of mesh to be generated very simply.
Flow solutions about symmetric airfoils at

zero angle.of-attack may thus be obtained at

half the expense or with double the nodal

density but no additional cost, Such

solutions are important in fundamental

research and also for comparison of full

potential flow solutions with small

perturbation solutions. These small

perturbation solutions are most strictly valid

at small, or zero, angle-of-attack on thin or

sharp nosed airfoils such as the biconvex

section shown in Figure 7.

1.20 -

1.0o -

0.80-

Y/C 0.60

0.40

0.20-

0
_.60 -0.40 -0.20 0 0.20 0.40 0.60 0.80 1.00 1.20 1.40

x/c

Figure 10
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16.3% NLR 7301 AIRFOIL
ALPHA = 0.391° MACH 0.502

v

Figures 11-13 illustrate the use of the

meshes shown in previous figures by the

current MCAIR FEM full potential flow pro.
gram. Figure 11 compares a FEM solution at a

moderate subsonic Mach number (0.5) and

small angle-of.attack to the solution by a
modern state-of.the.art Finite Difference
Method (FDM) program. The comparison is
good even though the FDM grid was much
denser than the FEM mesh.

FEM

CP

FL036 FDM

V

1 ] i i , ,
0 20 40 60 80 100

X/C PERCENT

Figure 11
Ol_'IOI'_ ?'_ O"dAi_AT'£
02_ I:,00_
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SUPERSONIC FIGHTER AIRFOIL (20° AND 10° FLAPS)
ALPHA = 1.0 ° MACH 0.5

Figure 12 compares solutions for the

supersonic fighter airfoil with 20 ° leading

edge and 10 ° trailing edge flaps. Since no

finite difference program was available which

would compute flows about sharp leading

edges and abrupt hinge lines, a modern

technology Panel Method program, the

Bristow Multielement Airfoil Analysis and

Design (MAAD) program, was employed for

comparison. A Karman.Tsien compressibility
correction was applied to obtain a Mach 0.5

solution. Agreement is good even in regions

of pressure spikes; howeverj the inexpensive

panel method employed approximately

double the panel (solution node) density of

the FEM and was able to more accurately

resolve the pressure peaks.

-3-

-2

cP -1

- CP*

S CAIR FEM
CL = 1.046

/,

_< METHOD + / ^'%_.

1 I _ I I

0 20 40 60 80 100

X/C PERCENT

Figure 12

51 7



NLR SYMMETRIC AIRFOIL
ALPHA=0 ° MACH 0.786

Figure 13 illustrates the use of a half.plane

mesh, specifically that shown in Figure g.

The solution was obtained in the fundamental

research on adapting the FEM to non.

subsonic flowfields where the governing

differential equations are of mixed

elliptic�hyperbolic type. Using the artificial

density concept of Hoist the MCAIR FEM was

able to produce this solution on a shock.free

airfoil which agrees reasonably well with the

theoretical hodograph solution. The versa.

tility of the mesh generator, both in technique

and program, greatly facilitates the FEM

research into fundamental computational

methods and in applied fluid mechanics.

-2

-1-

_MCAIR FEM

CP __ m

"_o 2; 4'0 6'0 8'0 100

X/C PERCENT

51 8

Figure 13



1-147 26

Numerical Generation of Two-Dimensional Orthogonal

Curvilinear Coordinates in an Euclidean Space*

Z. U. A. Warsi and J. F. Thompson

Department of Aerospace Engineering

Mississippi State University

Mississippi State, MS 39762

Abstract

In this paper a non-iterative method for the numerical generation

of orthogonal curvilinear coordinates for plane annular regions between

two arbitrary smooth closed curves has been developed. The basic

generating equation is the Gaussian equation for an Euclidean space

which has been solved analytically. The method has been applied in

many cases and these test results demonstrate that the proposed method

can be readily applied to a wide variety of problems. The method can

also be used for simply connected regions only by obtaining the solution

of the linear equation (19) under the changed boundary conditions.

Details on the work reported in this paper are available in Reference [i].

*This work has been supported in part by the Air Force Office of

Scientific Research, under Grant AFOSR No. 76-2922 and AFOSR No. 80-0185.
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Fundamental Ideas of the Method

All methods of numerical coordinate generation in a two-dimensional

plane and classified under the method of "elliptic equations" (Refs.

[2]-[10]), have depended invariably on the solution of Poisson equations

for the curvilinear coordinates _(x,y) and n(x,y):

_ i (gllFpl2 2gl2Fi 2 + g22Fil)V2_ = g

g22

P(_ n) (la)g

1

V2r_ = - g (gllFp22 - 2g12F__ 2 + g22P__l )

gll

g Q(_,n) (ib)

_here P(_,n), Q(_,_) are arbitrarily specified control functions, the gij

are the fundamental metric coefficients, the F_k are the Christoffel

symbols of the second kind

i i£[
Fjk = g jk,£] (2)

and

[jk,g] = _ ( + ---7- - )
_x 3x j ax

520

g = gllg22 - (g12)2

Implicitly equation (1) implies two things: (i) that the coordinates

for the same domain can also be obtained by solving the Laplace equations

V2_ = O, V2n = 0 (3)
L



E_2

.... _7 ¸

i

and (ii) since the rjk have first partial derivatives of gij in them,

equation (i) can also be interpreted as providing a set of constraints

or relations among the gij and their first partial derivatives.

In this paper we present another method based on elliptic

equations and state the problem as follows.

The three functions gll' g12' g22 of the curvilinear coordinates

_,n define an element of length ds in a plane if the Gaussian

equation with zero curvature

(/g ii) _ _ (. gZ ) = 0 (4)
_n gll

holds for every point in the plane, and then the Cartesian coordinates

are given as

x = x(_,n), y = y(_,n)

Equation (4) is identically satisfied by a function _(_,_) defined as

_ = _/_ F_I , _ F2
gll an = gll 12

Specifically, _ is the angle of inclination with respect to the x-axis

of the tangent to the coordinate line n = const, directed in the sense

of increasing values of the parameter _. The first partial derivatives

of x and y are

X _ --

q

x_ = _ cos _, Y_ = -_ggll

1

sin

(g12 cos _ + _gg sin _), YB =

1 (_g cos _ - g12 sin _)}(5)

521



Then

x = f[ g_ll cos _ d_ + _ (g12 cos _ + _g sin _)d_]

(_g cos a - g12 sin _)dn]

gll

The inverse relations of (5) are

(6)

_x _ (_g cos _ - g12 sin _)/gg_gll

_y -(g12 cos _ + /gg sin _)/ i

nx = _gll/g sin

= f-----_gll/gcosny

For the case of orthogonal coordinates, the coefficient

g12 = O, i.e.,

g12 _ x_xn + YsYn = 0

which is satisfied by the equations

(7)

(8)

}n -Fy$

Yn = Fx_

where F > 0 is a continuous function of gll and g22 [ii]

Referring to Figure i, let the boundary F2 of a bounded region

in an Euclidean two-dimensional space be a simple curve x = x (_),

y z y=(_), with a uniformaly turning tangent. In the region _, let

(9)
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Transformed Plane

(Natural Coordinates)

Figure i.- Physical and transformed planes.
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s be an annular subregion bounded by the inner boundary FI and the

outer boundary F 2. The region a is to be mapped onto a rectangulars

region R in the _q-plane by a transformation so as to have

x x(_,_)

y = y(_,n) J - - _

where q_ and q are the actual parametric values associated with the

boundaries F1 and F2, respectively, and x,y are periodic in the _-argument.

Substituting g12 = 0 in the fundamental equation (4) we get

where

[_! _ (F2gll)] +_ [_! _gll_
2-7 Fgll _¢ Fg11 _J = 0

(!0)

g22 = F2gll

g = (Fgll)2 f (II)

Before we solve the problem of orthogonal coordinate generation

based on the elliptic equation (i0), we digress and state the following

results: Following Potter and Turtle [ 6] we assume that the _-curves

in the physical xy-plane are free from sources and sinks. This

condition establishes a unique correspondence between the _-points on

each pair of q= const, lines. In the absence of sources and sinks,

we have

div[grad _(q)] = 0 (12)

where _(q) is an arbitrary differentiable function of q and grad _(q)

is oriented along the normal to the curve q = const. Carrying out the

differential operation in (12) and using the expressions

Igrag ql = i/g_22
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in (12), we obtain

__ - d2_/J_
(_.n /gll/g22 )=

_n dn2 "dn

Writing d_ = i/_(n) and denoting the arbitrary function of _ due to
dn

integration by %np(_), we obtain the result

/gll/g22 = p(_)_(4)

= I/F (13)

This result shows that for the case of orthogonal coordinates the

ratio gll/g22 is a product of the positive functions p(_) and _(n).

The result in (13) also provides the condition for the two distinct

families of orthogonal curves

= const., _ = const.

tO divide the physical plane in infinitensimal squares. (See Cohen [12]).

We now introduce new coordinates E'(E) and n'(4) as

dn (14)

Thus

' = gll/_2' g22 = g22 _gll

so that

g22 gll

Defining

P' = _n gll
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it can be shownthat

--__+82P'82P' ____(q) {_ [_i _ (F2gll)] +_ [_i 8gll]} (15)
85'2 8n'2 P(_) Fgll Fgll _n

Using (15) in (i0), we get a muchsimpler equation

_2p, _2p,
--+----= 0

_,2 _q,2

Another important result can be obtained based on (13).

the orthogonality condition g12 = 0 in (7), we have

qy = _x/F' qx = - Sy/F

so that

(16)

Using

8 8

8-_ (_x/F) +_yy (_y/F) = 0 (17)

Carrying out the transformation (14) in (17), we get

V2_ ' = 0 (18)

Equation (18) provides the uniqueness condition for the solution of

equation (16).

Based on the preceeding analysis we can state that if an exact

analytic solution of equation (I0) can be obtained for F = i, i.e.,

g22 = gll' then the solution for any other coordinate system _ and q,

where _ = ¢ (_) and n = f(_),can simply be obtained by the substitution

of # and f in place _ and q respectively. With this scheme in mind,

we solve the equation
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Iw
g22 = gll

P = £n gll

under the boundary conditions

P = PB(_) at n = 0# 1

I
0 < _ < 2_

(20)

(21)

where the subscripts B and _ denote the inner and outer boundaries,

respectively. The periodicity requirement is that

p(_,q) = P($+2_,q) (22)

Further, the E-coordinate must be such that the equation

V2_ = 0 (23)

is always satisfied.

A general analytic solution of equation (19) under the boundary

conditions (21) and the periodicity condition (22) is

e(_,q) = a + qK + _=i sinh n(n=-_)o

(an cos nE + bn sin n$)/sinh nq_

+ _=i sinh nn(c n cos n£ + dn sin n_)/sinh nn_ (24)

= (Co_ao)/q= (25)

where

and 2_

2_ Br_ ia i _ P )dE c =- f PB- ' o 2_ o
o 2_ o

(_)d_

tThere is no loss of generality in setting the parametric value qB = 0.

The value _ must be interpreted as the difference between the actual
values of q at the outer and inner boundaries.
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1 2_ i 2_ pB(_
a = _ / PB(_) cos n_ d_, bn =-- / ) sin n_ d_

n 'IT 0 _ 0

1 2_T 2_T
C ------ / Poo(_) cos n_ at, d = i /
n IT 0 n _ 0 Po_(_) sin n_ dE

For orthogonal Coordinates

1 _gll

2V_g _q ' an

1 8g22

therefore for g22 = gll

}
(26)

1 _P 1 _P
C_ --------- C_ =

2 _n' q 2 _

and consequently

oo cosh n (qoo-q)

_(_,q) = e(_,o) + nE=l 2 sinh n q_o
(b cos n_ - a

n n
sin n_)

cosh nn

+ _=i 2 sinh n q (cn sin n_ - dn cos n_)

cosh n q

- _=i 2 sinh nv (bn cos n_ - an sin n_)

v

oo 1 (c sin n_ - d cos n_)
- n_=l 2 sinh n qoo n n

Having determined gll and _, we can find the Cartesian coordinates

x(_,q) = x(_,o) + fo _ g_22 sin _ dq

Y(_,q) = Y(6,o) + /no gV_22 cos _ dq

}
(28)

The preceding solution is for the case when g22 = gll' i.e.,

F = I. However, as stated earlier, the solution for any other coordinate

system _,q in which g22 # gll can be obtained by replacing _ and q

in (24), (27) and (28) by @(_) and f(_), respectively. This feature can
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be used to redistribute the coordinate lines in the desired regions.

Since the functions _ and f are at our disposal, they play the same role

as P and Q in equation (I). Further, since the Fourier coefficients

(26) are invariant to a coordinate transformation _ = _(_), where

- L_(_o ) = 0, _( ) = 2_ and $o corresponds to $ = 0, _m corresponds to

$ = 2_, these coefficients need not be recalculated.

The procedure of transformation from $,n to _,n is as follows.

On transformation from (_,_) to (_,n), the covariant metric

coefficients transform through the equation

_ Dx k 3x _

gij = gk_. 3_i _j

so that, on using the relations g22 = gll and g12 = 0, we have

_ 2 ($_)2 1

gll = [(_-_-) + -_ ]gll

g22 [(___$_)2+ (___9_)2]gli
_n _n

(29)

We now introduce the transformation

= _(E)

n = f(n) (30)

where the functions # and f are continuously differentiable and satisfy

the conditions

(_o) = 0, f(7_) = 0

where _ = 0 corresponds to E = Eo and _ = 0 corresponds to _ = nB.

Defining

% =d_#_ 0 df

d_ dn
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we obtain from (30)

-- 82 _
g22(_'n) = --%2gll(_'q)

Comparingwith (13), we find _ = _, v = i (31)

The salient feature of the preceding analysis is that the solution

for the case g22 = gll can be used to obtain the solution for the case

g22 # gll by coordinate transformation.

Before solving any specific problem, it is important first to

establish an orthogonal correspondence between unique points of the

inner and outer boundary curves. This condition is satisfied if we

choose the _-curves satisfying the equation

V2_ = 0 (32)

The inner and outer boundary curves are available either in tabular

or functional form as

YB = y(xB), y_ = y(x ) (33)

For equation (32) to be satisfied, we can take < as the angle traced

out in a clockwise sense by the commonradius of the concentric circles

in a conformal representation of the inner and outer boundary curves.

If a and A, respectively, are the radii of the inner and outer circles

in the transformed conformal plane, then

i 2z

a = _ /o2_ [x_(_) cos _ - y_(_) sin _]d_ 1
A = _ fo [xoo(_) cos _ - y_(_) sin _]d_ (34)
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As is well known, the preceding scheme is an iterative numerical scheme.

In lieu of this, we have developed a method which is fast and direct,

and is equivalent to satisfying equation (32).

We circumscribe circles around the inner and outer boundary curves.

Two cases arise depending on whether the circles are concentric or

nonconcentric.

Case I: If the circumscribed circles are concentric (Fig. 2(a)), then we

select those values of the ordinates which correspond to the abscissae

xfl rs cos _, x_ = rh cos _ (35)

where r and rL are the radii of the circumscribed circles in thes

physical plane.

7

_J Case II: If the circumscribed circles are nonconcentric (Fig. 2(b)),

then we first use the formula for the conformal transformation of non-

concentric to concentric circles, Kober [13], and choose the ordinates

corresponding to abscissae given by the formula

x(_) = [(i - cy cos _) {XL(l - cy cos $) + cyy L sin

+ rL(c cos _ - y cos($-_))}

- cy sin _{YL(I - cy cos _) - cyx L sin

- rL(c sin _ + y sin(_-_))}]

/(i - 2cy cos _ + c2_ 2) (36)

where

rL,r s radii of outer and inner circumscribed circles

(xL,YL) and (Xs,Y s) = coordinates of the centers
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Y

j

C2

(a) Concentric circumscribed circles C 1

and C2 of radii rs and rL, respectively,
with center at the origin.

!

V

(b) Nonconcentric circumscribed circles C 1

and C2 of radii rs and rL and centers

at zs and ZL, respectively.

Figure 2.- Circumscribed circles.
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d 2 = (Xs_XL)2 + (ys_YL) 2

Ys-YL

= _ - tan-i (Xs_--_L)

2 _ r2)2 _ 4d2r_}i/2]/2rL d
c = [(d 2 + r_ - r 2) + {(d 2 + r L s

= i for the outer boundary

rLd_ t
Y r t for the inner boundary

s

t = cr L

Having determined the appropriate sets (xB(_), yB(<)) and

(xoo(_), y (_)), we use (34) to obtain the values of a and A. The

parametric difference I"Ioois connected in some manner with the "modulus"

of the domain which, however, by itself is a separate problem (see

Burbea [14] and Gaier [15]). In this work we have defined _ based

on the knowledge of a and A as discussed above by the formula

n_° _n(A) (37)

For Figures 3 to 8, we have used the following functional forms

of _ and f:

2_(_-_ o)

_m-$o

f(_) =
n (n-nB) K(n-n B)

r_o-n 8 K(n,o-nB )
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so that

27

_m-_o

n
oo

[i + (q-U_) £n K]

K(n-n_)

(n.-nS)
K

where K > I is an arbitrary constant, and < = , n = _ correspond,

respectively, to _ = 27 and _ = n • We treat $ and _ as integers so

that _o i, _ = IMAX, n8 = i, and n = JMAX. Since _ is known
m _

from (37), hence by specifying the numerical values to K and JMAX

we can create the desired mesh control in the direction of n. The

value of K between 1.05 and i.I is quite sufficient [16] to have a

fine grid near the inner boundary.

The number of terms to be retained in the series (24) is usually

small for convex inner and outer boundaries, though we have retained

(IMAX-I)/2 number of coefficients in each computation. This number

is the optimum number of terms in a discrete Fourier series [17]

having IMAX number of points in one period.

Figure 3 shows the classic case of confocal ellipses with coordinate

contraction in _. The value of K is 1.05. The orthogonal correspondence

between _-points of the inner and outer boundary has been established

by using Case I, Eq. (35).

V
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Figure 3.- Confocal ellipses. Semimajor axes 1.48, 5.0,
and semiminor axes 0.5, 4.802, respectively. Only

38 _ = Const. lines shown for detail.

._ _'_ k _ J • _ "' .....

_,_.._ _jL.,,._
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Figure 4 presents orthogonal coordinates for a blunt body with elliptical

outer boundary. Here K = l.O1. For orthogonal correspondence between _-points,

Eq. (35) has been used.

Figure 4.- A blunt body section with elliptical outer boundary.

/

/

/

V
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Orthogonal coordinates for nonconcentric circles are presented in

Figure 5. Here K = 1.01. For orthogonal correspondence between E-points

between the inner and outer boundary, Eq. (36) has been used. Data shown on

the figure.

Figure 5.- Nonconcentric circles: rs = i, rL = 2.5,

zs = (0,0), zL = (i,0).

k_J
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Orthogonal coordinates for a Joukowsky's airfoil with slightly rounded

trailing edge are shownin Figure 6. Eq. (35) is used for orthogonal

correspondence. IIere K = 1.02.

Figure 6.- Joukowsky's airfoil with slightly
rounded trailing edge.
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Figure 7 presents orthogonal coordinates for nonconcentric ellipses.

Centers of the inner and outer ellipses are at (0,0) and (i,0), respectively.

Here K = 1.01. For orthogonal correspondence Eq. (36) has been used.

Figure 7.- Nonconcentric ellipses. Size data same as in

Figure 3. zs = (0,0), zL = (i,0).

E
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Orthogonal coordinates for an arbitrarily deformed upper part of

Figure 4 are shownin Figure 8. The placement of outer boundary is limited

to avoid intersecting normals (Eiseman [18]). This figure shows that we need

someattraction near those sections of the outer boundary which face the

concave side.

Figure 8.- Generated coordinates for body having convex,
concave and straight portions. Placement of outer
boundary is decided by the radius of the osculating
circles of the concave portions.
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Summary of Numerical Experimentation

In the course of this investigation a number of cases of inner

and outer boundary shapes and orientations have been tested through

the developed computer program. The main conclusions are listed below:

(i) The method works very effectively for smooth and convex boundaries

of any shape and orientation.

(ii) For concave boundaries a method similar to that of Eiseman has

to be used in the placement of the outer boundary to avoid intersecting

normals. Another remedy would be to introduce some type of

attraction near the outer boundary facing the concave side of the

inner boundary.

(iii) Sharp turns and corners are not admissible and have to be rounded

to avoid singularities in the metric data.
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A BODY-FITTED CONFORMAL MAPPING METHOD

WITH GRID-SPACING CONTROL

3. C. Wu

and

U. Gulcat

Georgia Institue of Technology

It is demonstrated by analyses and by numerical illustrations that any
arbitrarily prescribed contour, open or closed, can be mapped conformally onto a
simple contour, such as _ unit circle, using any arbitrarily prescribed distribution
of scale factor of transformation. This flexibility of selecting a scale factor
distribution on the contour is not in violation of the well-known Riemann's
uniqueness theory for conformal mapping. The much used 3oukowski
translormation is shown to be one of a family of conformal transformations that
map a given airfoil contour onto a unit circle. For flow problems, the conformal
mapping of a region bounded by a complicated contour onto a corresponding
region bounded by a simple contour is of interest. With an arbitrarily prescribed
scale factor, there exist in general singular points located at finite distances
from the contour. (The case where singularities are located infinitely far from
the contour is an exception.) Numerical methods for generating conformal grids
should therefore incorporate a mechanism that ensures the absence of singular

points in the region ol interest. In this context, the distribution of scale factor on
the contour cannot be arbitrary. The restriction on the scale factor distribution
is not stringent. There exists ample freedom in the control of grid spacing on the
contour so that, in general, the physics of the flow problem can be
accommodated by a suitably designed conformal grid.

545Precedingpageblank



DESIRED FEATURES OF GRID SYSTEMS

Be body-fitted.

Possess control over grid-spacing.

Yield algebraic equations amenable to highly efficient numerical

procedures.

Require minimal computational efforts to generate.

The first feature listed above is generally accepted as being the key to the

successful computation of flows. The second feature is essential to the

computation of complex flows with diverse length scales in different regions of

the flows. The third feature is critical in situations where the amount of

computation required is very large. The fourth feature is important if repeated

generation of grids is desired during the solution of a given problem. (For

example_ in the solution of a time-dependent problem9 different grids may be
desired for different time intervals).

_ I
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CURVILINEAR COORDINATES AND GRID SYSTEM

Non-orthogonal coordinates yield transformed differential equations

that are substantially more complicated than the original equations.

Orthogonal non-conforma] coordinates yield less complicated equations.

Conformal coordinates yield simplest transformed equations.

The requirements that a transformation be conformal and that it

possesses a grid-spacing-control ability are not mutually exclusive.

Conformal mapping can be generated very efficiently.

Orthogonal grids can be easily developed using conformal mapping.

The advantages of using conformal grids are most clearly demonstrated by

the numerical procedures available for the Poisson's equation. Algebraic

equations obtained in conformal grids can be solved using direct methods such as

the block Gaussian elimination, the odd-even reduction9 and the Fourier series

methods. The choice of methods is somewhat more limited in an orthogonal non-

conformal grid. With non-orthogona] grids, iterative procedures are generally

required. The main purpose of this paper is to show that any prescribed two-

dimensional body contour can be conforma]ly mapped onto a simple shape, such

as the unit circle9 and such mappings do possess a grid-spacing-control ability.
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CONFORMAL MAPPING

Y

0

z 3

X

_4

-plane
E-plane

= _+ i_ = pei_

Any usual contour, open or closed, can be mapped conformally onto a

simple contour, such as a circle or a straight line segment, using any prescribed

distribution of the scale [actor of transformation on the contour. This is true for

smooth contours as well as for contours with discontinuous slopes. The unit circle

is used as the canonical contour for the following discussion. A total of K

equally spaced points are assigned on the unit circle, with the point _k given
by

iz_k/K
Ck = e

where K isan odd integer.

V

The corresponding points, zk , on the original contour are sequenced as shown but

otherwise arbitrarily located.
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= p ezm

Ck = exp ( )

N

z = f(_) = E Cn_n
n= -N

THE LAURENT SERIES

, K an odd

K-I
, N- 2

N }zk E C exp (= n K
n= -N

N

Z zk exp { iz_km )K
k=-N

N N

= E C

n=-N n n=-N

K m=n0 m=n

integer

C = -- _i, zk exp K
n K k=-N

I N N { iz_kn } _n= -- E E zk exp K
z K n=-N k=-N

izuk (m-n) }K

By analytic continuation, the Fourier coefficients of the Laurent series are

those obtained above. The finite Laurent series therefore can be used to compute

the grid-point locations away from the contour that corresponds to specified grid

points in the _-plane. The above analysis can be carried out for an infinite

Laurent series. The only change is that the Fourier coefficients are then

expressed as integrals instead of sums. The finite Laurent series represents an

approximation of the infinite Laurent series whose regular part converges inside

a certain circle and whose principal part converges outside another certain

circle. The domain of convergence of the infinite Laurent series is the common

annulus of the two circles. The finite Laurent series produces accurate conformal

grids in this domain of convergence. The conformality of the grids thus generated

is ensured by the analyticity of the Laurent series,
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A CONFORMAL GRID WITH SINGULAR POINTS
NEAR THE CONTOUR

With an arbitrarily prescribed distribution of the scale factor, there exist in

general "singular points" located at finite-distances from the contour. Therefore,

numerical methods for generating conformal grids should contain provisions that

ensure the absence of singular points in the region of computational interest. In

this context_ the distribution of the scale factor on the contour cannot be

arbitrary. In this figure is shown a grid around a symmetric airfoil with singular

points located near the airfoil. This figure is obtained using the finite Laurent

series method. The prescribed points on the airfoil are symmetrically distributed

about the line of symmetry of the airfoil. The grid lines shown are mapped onto

the radial lines and concentric circles shown on the next figure.
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THE GRID SYSTEM IN THE CIRCLE-PLANE

The "canonical" domain used here is the domain exterior to the unit circle.

The grid lines shown here are mapped conformally onto the grid lines shown in

the air_oil-planes at all points except the singular points where the mapping

ceases to be conforma]. The gird shown is orthogonaI with equal spacings in the

angular and the radial directions.

z=
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3OUKOWSKI GRID

This figure shows the grid lines around a 9 % thick symmetric airfoil that is

mapped using the 3oukowski transformation

0.854078
z = _ - 0°05214 + - 0.05214

With this transformation there is no singular point at a finite distance from the

airfoil. The trailing edge in this transformation is rounded (so as to avoid the

need of the Schwarz-Christoffel procedure, which would have introduced

complications unnecessary at this stage of development). The finite Laurent

series method, with grid points on the airfoil boundary assigned properly,

produces a grid system that is indistinguishable from the one shown.

ORIGINAL PA 7_ L:,;

OF POOR QUALIFy
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A SYMMETRIC BILINEAR GRID

\

V

The unit circle in the _ -plane can be mapped onto a unit circle in the w-

plane through a bilinear transformation of the form

W -,,Of¢ -
1 -otw

For any assigned value of _ , the points on the airfoil boundary that correspond

to uniformly distributed grid points on the unit circle can be located. The finite

Laurent series method then yields a conformal mapping of a region exterior of

the circle in the w-plane onto a region exterior of the airfoil in the z-plane. The

concentric circles and radial lines in the w-plane are mapped onto the grid lines

shown above for the case c_ = I/8 • The grid lines are symmetric about the line of

symmetry of the airfoil.
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A NON-SYMMETRIC BILINEAR GRID

//

i

\

Using a complex value for c_ _ the concentric circles and radial lines in the

w-plane are mapped onto non-symmetric grid lines in the airfoil-plane. The
l+i

figure above shows grid lines for the case _--4_--" The singular points of the grid

system shown here and in the previous figure are sufficiently far from the airfoil

so that the grids are of practical interest.
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A GRID IN USE

1

/
/

This grid has been used in a computation of a flow past a 9 % thick

symmetric airfoil at an angle of attack of 15%. The grid is a bilinear grid with

c_ = 16, In this study_ the boundary layer region of the flow is computed

separately from the detached region. It is only necessary to generate a grid

covering the computation field and to keep the singular point away from this
computation field,
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INITIAL FLOW PATTERN AROUND AN AIRFOIL

This and the following figure_ show computed streamlines and vorticity

contours around a 9 % thick airfoil set into motion impulsively and thereafter

kept moving at a constant velocity with an angle of attack of 15° and a Reynolds

number of 1000. This figure is for the time level immediately after the motion's

onset. The vorticity is confined to the boundary of the airfoil and the flow away

from the airfoil is potential. Note that the rear stagnation point is on the upper

surface of the airfoil.



FLOWAROUND AN AIRFOIL WITH A SEPARATIONBUBBLE

This figure shows the computed streamlines and constant vorticity contours

around the airfoil after the airfoil has advanced 2.9 chord lengths relative to the

freestream. A separation bubble has appeared and grown to its present size. The

vorticity field is still confined to the region near the airfoil as shown. With the

integro-differential approach used here_ it is only necessary to perform

computations in the vortical region. Therefore the grid needs only be generated
for the vortical region.

V

OVc _-'- _ C._ =_
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OUTLINE OF GRID GENERATION PROCEDURE

The recommended procedure for generating a conformal grid with control over

grid spacing consists of four steps:

i(1) The locations of grid points on the physical contour that are mapped onto

equally spaced points on a unit circle through a "3oukowski type" conformal
transformation are computed.

(2) The coefficients in a finite Laurent series are computed as

earlier.

(3) A suitable bilinear transformation is introduced.

(4) Grid locations corresponding to concentric circles and radial lines in the

bilinear transformed plane are computed.

A computer program (prepared by N. L. Sankar) which performs step (1) is

available. This program uses an iterative procedure (Bauer et al_ 1977 and other

researchers). A spline approximation is utilized to achieve a high degree of

accuracy. The operation count for this step is small. For each given contour_

if several different grids are to be generated9 then step (4) is the only step that

needs to be repeated. Steps (1) and (2) need to be performed only once for the

contour. Step (3) needs to be performed only once for all contours of interest.
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CONCLUDINGREMARKS

Body-fitted conformal grids can be generated efficiently using th

approach described.

Ample freedom exists in the control of grid spacing on any contour so tha_

the physics of the flo_ can be suitably accomadated.

The work reviewed here represents only the initial stage of development of

a new conformal mapping approach for grid generation. Based on the results

obtained thus far_ this approach is a highly promising one for use in computing

complex flow problems.
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